Bioaccumulation of Chromium Ions by Immobilized Cells of a Filamentous Cyanobacterium, Anabaena variabilis

  • Khattar, Jasvir I.S. (Department of Botany, Punjabi University) ;
  • Sarma, Tangirala-A. (Department of Botany, Punjabi University) ;
  • Singh, Davinder-P. (Department of Botany, Punjabi University) ;
  • Sharma, Anuradha (Department of Botany, Punjabi University)
  • Published : 2002.02.01

Abstract

Anabaena variabilis ATCC 29413 grew in chromium (Cr) containing Chu-10 (basal) and nitrate-supplemented media, and the growth of the organism in $100{\mu}M$ chromium was found to be 50% of that in control medium. The growth in nitrate $({NO_3}^-)$ supplemented cultures was better as compared to cultures grown in basal medium. Free cells from basal and nitrate-supplemented media removed 5.2 and 7.4 nmol of chromium $mg^{-1}$protein in 8 h, respectively, from the medium containing $30{\mu}M$ chromium. The efficiency of chromium removal increased 7-fold in imidazole buffer (0.2 M, pH 7.0). A cell density equivalent to $100{\mu}g$ protein $ml^{-1}$ was found to be optimum for maximum Cr removal. Entrapment of cells in calcium-alginate beads did not affect the rate of Cr uptake by the cells. The efficiency of the laboratory-scale continuous flow bioreactor $(12.5{\times}2cm)$ loaded with alginate-immobilized cells (10 mg protein) and fed with $30{\mu}M$ chromium solution was compared at different flow rates. The efficiency of the bioreactor varied with flow rates. In terms of percent removal of Cr from influent, a flow rate of 0.1 ml $min^{-1}$ was found to be optimum for 6 h (54% Cr removal efficiency). Maximum amount of Cr (883 nmol) was removed by the cells in 3 h at a flow rate of 0.5 ml $min^{-1}$. The potential use of A. variabilis in removing Cr from industrial effluents is discussed.

Keywords

References

  1. Process Biochem. v.30 Investigations on nickel biosorption and its remobilization Asthana, R. K.;S. Chatterjee;S. P. Singh
  2. J. Indus. Microbiol. v.14 Uptake and transformation of metals and metalloids by microalgal mats and their use in bioremediations Bender, J.;F. L. Richard;P. Phillips https://doi.org/10.1007/BF01569892
  3. Wat. Res. v.32 The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale Butter, T. J.;L. M. Evison;I. C. Hancock;F. S. Holland;K. A. Matis;A. Philipson;A. I. Sheikh;A. I. Zouboulis https://doi.org/10.1016/S0043-1354(97)00273-X
  4. Z. Pflanzen. Physiol. v.78 The effect of sublethal concentrations of mercury and zinc on Chlorella. Ⅱ. Photosynthesis and pigment composition De Filippis, L. F.;C. K. Pallaghy https://doi.org/10.1016/S0044-328X(76)80101-8
  5. J. Phycol. v.24 Properties of Microcystis aeruginosa and M. flos-aquae (Cyanophyta) in culture Doers, M.;D. L. Parker
  6. Plant Physiol. (Life Sci. Adv.) v.10 Physiological and structural responses of the cyanobacterium Nostoc UAM 208 to free Cd ions Fernandez-Pinas, F.;P. Mateo;I. Bonilla
  7. Chem. Ind. v.13 Biosorption Gadd, G. M.
  8. Biotechnology Handbook, 6B: Special Microbial Processes Accumulation of metals by microorganisms and algae Gadd, G. M.;K. J. Rehm(ed.)
  9. Nature v.182 Spectrophotometric determination of proteins in alkaline solutions Hewitt, B. R.
  10. Microbial. Ecol. v.31 Comparative study of nickel toxicity to growth and photosynthesis in nickel resistant and sensitive strains of Scenedesmus acutus f. alternans (Chlorophyceae) Jin, X.;C. Nalewajko;D. J. Kushner
  11. Enzyme Microbial Technol. v.25 Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor Khattar, J. I. S.;T. A. Sarma;D. P. Singh https://doi.org/10.1016/S0141-0229(99)00092-7
  12. Can. J. Fish Aquat. Sci. v.41 Metal toxicity to algae: a highly pH dependent phenomenon Peterson, H. G.;F. P. Healey;R. Wagemann https://doi.org/10.1139/f84-111
  13. Appl. Environ. Microbiol. v.57 Chemical characterization of polysaccharides from the slime layer of cyanobacterium M. flos-aquae C3-40 Plude, J. L.;D. L. Parker;O. J. Schommer;R. J. Timmerman;S. A. Hagstrom;J. M. Joers;R. Hnasko
  14. Microbios v.55 Chromium toxicity to a cyanobacterium: Possible role of carbon sources in toxicity amelioration Rai, L. C.;S. K. Dubey
  15. Biol. Rev. v.56 Phycology and heavy metal pollution Rai, L. C.;J. P. Gaur;H. D. Kumar https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
  16. Aquatic Toxicol. v.42 pH altered interaction of aluminium and fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris Rai, L. C.;Y. Husaini;N. Mallick https://doi.org/10.1016/S0166-445X(97)00098-2
  17. J. Microbiol. Biotechnol. v.10 Services of algae to environment Rai, L. C.;H. D. Kumar;F. H. Mohn;C. J. Soeder
  18. Microbios Lett. v.30 Metal induced inhibition of growth, heterocyst differentiation, carbon fixation and nitrogenase activity of Nostoc muscorum: Interaction with EDTA and calcium Raizada, M.;L. C. Rai
  19. Enzyme Microbial Technol. v.16 Removal of aqueous mercury and phosphate by gel entrapped Chlorella in packed bed reactors Robinson, P. K.;S. C. Wilkinson https://doi.org/10.1016/0141-0229(94)90039-6
  20. J. Bacteriol. v.88 Growth characteristics of the blue-green algal virus LPP-Ⅰ Safferman, R. S.;M. E. Morris
  21. Acta Biotechnol. v.16 Heavy metal sorption by algae Sandau, E.;P. Sandau;O. Pulz https://doi.org/10.1002/abio.370160402
  22. FEMS Microbiol. Lett. v.99 Nickel uptake and its localization in a cyanobacterium Singh, A. L.;R. K. Asthana;S. C. Srivastava;S. P. Singh https://doi.org/10.1111/j.1574-6968.1992.tb05560.x
  23. Chemosphere v.10 The effect of cadmium ion on the growth, photosynthesis and nitrogenase activity of Anabaena inaequalis Stratton, G. W.;C. T. Corke
  24. Biotechnol. Prog. v.11 Biosorption of heavy metals Volesky, B.;Z. R. Holan https://doi.org/10.1021/bp00033a001
  25. Appl. Microbiol. Biotechnol. v.41 Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca Wehreim, B.;M. Wettern https://doi.org/10.1007/BF00167291
  26. Biotechnol. Tech. v.8 Comparative studies of heavy metal uptake by whole cells and different types of cell walls from Chlorella fusca Wehreim, B.;M. Wettern https://doi.org/10.1007/BF00155412
  27. Biotechnol. Advances v.11 Bioremoval of heavy metals by use of micro-alage Wilde, E. W.;J. R. Benemann https://doi.org/10.1016/0734-9750(93)90003-6
  28. J. Appl. Phycol. v.2 Mercury removal by immobilized algae in batch culture systems Wilkinson, S. C.;K. H. Goulding;P. K. Robinson https://doi.org/10.1007/BF02179779
  29. Biotechnol. Lett. v.14 Accumulation of nickel ion (Ni+2) by immobilized cells of Enterobacter species Wong, P. K.;S. C. Kwok https://doi.org/10.1007/BF01023954
  30. Enzyme Microbial Technol. v.25 Effect of chromium (Ⅵ) on the biomass yield of activated sludge Yetis, V.;G. N. Demirer;C. F. Goekcay https://doi.org/10.1016/S0141-0229(99)00013-7