Evaluation of the High Purity ZnTe which is an Far-Infrared Sensor Material

적외선 센서 재료로 사용되는 고순도 ZnTe박막의 평가

  • Kim, B.J. (Institute for Advanced materials Processing, Tohoku University)
  • Published : 2002.10.01

Abstract

Optical measurements have been used to study the biaxial tensile strain in heteroeptaxial ZnTe epilayers on the (100) GaAs substrate by hot wall epitaxy (HWE) with Zn reservoir. It is effect on the low-temperature photoluminescence spectrum of the material. Optimum growth condition has been determined by a four-crystal rocking curve (FCRC) and a low temperature photoluminescence measurement (PL). It was found that Zn partial pressure from Zn reservoir has a strong influence on the quality of grown films. Under the determined optimum growth condition, ZnTe epitaxial films with thickness of 0.72~24.8$\mu\textrm{m}$ were grown for studying the effect of the thickness on crystalline quality. The PL and FCRC results indicated that the quality of ZnTe films becomes higher rapidly with increase of thickness up to 6$\mu\textrm{m}$. The best value of the FWHM of the four crystal rocking curve, 66 arcsec, was obtained on the film with 12$\mu\textrm{m}$ in thickness. The PL spectrum shows the splitted strong free exciton emissions and very weak deep band emissions. These results show the high quality of films.

Keywords

References

  1. J.Han, T.S.Stavrinides, M.Kobayashi, R.L.Gu-nshor, M.M.Hagerott, and A. V. Nurmikko, : Appl. Phys.Lett.62 (1993) 840 https://doi.org/10.1063/1.108568
  2. H.E.Ruda, Ed. : Widegap ?? - V? compounds for Opto-electronic Applications Chapman & Hall, London (1992)
  3. D.L. Smith and V.Y. Pickhardt : J. Appl.Phys. 46(1975) 2366 https://doi.org/10.1063/1.321915
  4. H.Shtrikman, A.Raizman, and M.oron, D. Eger J. Crystal Growth 88 (1988) 522 https://doi.org/10.1016/0022-0248(88)90150-9
  5. S. Dosho, Y. Takemura. M. Konagai, and K. Ta kahashi : J.Appl.Phys. 66 (1989) 2597 https://doi.org/10.1063/1.344225
  6. E. Abramolf, K. Hingerl, A. Pesek, and H. Sitter, Semiconductor Sci. Technol.6 (1991) A80 https://doi.org/10.1088/0268-1242/6/9A/014
  7. A. Lopezo-Otero : Thin Solid Films 49 (1987) 3
  8. J.F. Wang, K. KiKuchi, B.H. Koo, Y. Ishikawa, W. Uchida and M. Isshiki : J. Crystal Growth 187(1998) 373 https://doi.org/10.1016/S0022-0248(98)00022-0
  9. S.N. Nam, J.K. Rhee, B.S. O, K.S. Lee, Y.D. Choi, G.N. Jeon. and C.H. Lee : J. Crystal Growth 180 (1997) 47 https://doi.org/10.1016/S0022-0248(97)00193-0
  10. Y. Zhang , B. Skromme, and F.S. Turco-Sandroff : J. Phys. Rev. B46 (1992) 3872
  11. P. Cheuvart, U.EL-hanami, D.Schneider, and R.Triboulet : J.Crystal Growth 101 (1990) 270 https://doi.org/10.1016/0022-0248(90)90980-Y
  12. B.J.Kim, J.F. Wang, Y. Ishikawa and M. Isshiki : J. Crystal Growth (to be published)
  13. P.J. Dean and J. L. Merz : Phys. Rev. 178 (1969) 1310 https://doi.org/10.1103/PhysRev.178.1310
  14. M.Isshiki, T.Kyotani, K.Masumot, W.Uchida and S.Suto : Phys. Rev. B.36 (1987) 2568 https://doi.org/10.1103/PhysRevB.36.2568
  15. A. Naumov, K, Wolf, T, Reismger, H, Stanzl, and W. Gebhardt : J, Appl, Phys. 73 (1993) 2581 https://doi.org/10.1063/1.353071
  16. M. Ekaya, and T. Tacuchi : J. J. Appl. Phys. 28 (8) (1989) 1341 https://doi.org/10.1143/JJAP.28.1341
  17. Y. Zhang , B.J. Skromme, and F.S. Turco-Sandroff, Phys. Rev. B46 (1992) 3872
  18. H. Venghaus, and P. J. Dean : Phys. Rev. B 21 (1980) 1596 https://doi.org/10.1103/PhysRevB.21.1596
  19. G. Kudlek, N. Presser, J. Gutowski, K. Hangerl, E. Abramof, and H. Sitter : J. Crystal Growth117 (1992) 290 https://doi.org/10.1016/0022-0248(92)90762-8