A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method

용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구

  • 김재철 (성균관대학교 고분자공학과) ;
  • 박기헌 (성균관대학교 전기ㆍ전자ㆍ컴퓨터공학과) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Published : 2002.11.01

Abstract

The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

본 연구에서는 나노입자인 카본블랙을 고분자에 분산시킨 복합체를 각각 용액혼합과 용융혼합을 이용하여 positive temperature coefficient (PTC) 특성을 연구하였다. 전도성 나노입자인 카본블랙과 고분자 복합체의 저항 통전 (threshold)은 용융혼합하였을 때 카본블랙의 함량이 35wt% 이상에서 나타났으며. 용액혼합에서는 카본블랙 함량이 40 wt% 이상에서 나타났다. Ethyl-one vinylacetate copolymer (EVA)의 경우, 온도의 변화에 따라서 저항이 서서히 증가하다가 용융점 근처에서 극대값을 나타내었지만, high density polyethylene (HDPE)의 경우는 저항이 온도의 변화에 따라 일정하다가 용융점 근처에서 증가하기 시작하여 용융점에서 극대값을 나타내었다. 통전 후의 낮은 저항과, scanning electron microscopy (SEM)으로 관찰한 결과로부터 전도성 나노입자의 카본블랙 분산방법에서 용액혼합의 분산 정도가 용융혼합 못지않게 나타났다. PTC 소재에 전류인가시 큐리온도에서 1차적으로 저항이 증가하였으며, 고분자의 용융점에서 2차적으로 트립온도가 될 때까지 저항이 증가하다가 트립온도 이후에는 저항이 일정하게 유지됨을 알 수 있었다.

Keywords

References

  1. Polym. Eng. Sci. v.13 J. Meyer https://doi.org/10.1002/pen.760130611
  2. J. Appl. Polym. Sci. v.67 X. S. Yi;G. Wu;D. Ma https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<131::AID-APP15>3.0.CO;2-4
  3. Composities Science and Technology v.61 X. S. Yi;L. Shen;Y. Pan https://doi.org/10.1016/S0266-3538(00)00191-3
  4. Carbon v.39 M. H. Bischoff, Franc;O. E. Dolle https://doi.org/10.1016/S0008-6223(00)00130-5
  5. Polym. Int. v.44 X. S. Yi;G. Wu;Y. Pan https://doi.org/10.1002/(SICI)1097-0126(199710)44:2<117::AID-PI811>3.0.CO;2-L
  6. International Symposium on Advanced Packaging Materials S. Lue;C. P. Wong
  7. Transactions on Components and Packaging Technologies v.23 S. Lue;C. P. Wong https://doi.org/10.1109/6144.833054
  8. Transactions on Components, Hybrids and Manufacturing Technology v.CHMT-4 F. A. Doljack
  9. Polymer v.41 J. Feng;C. M. Chan https://doi.org/10.1016/S0032-3861(99)00690-4
  10. J. Mater. Res. v.14 D. J. Wang;J. Qiu;Z. L. Gui;L. T. Li https://doi.org/10.1557/JMR.1999.0401
  11. J. Mater. Res. v.14 D. J. Wang;J. Qiu;Y. C. Guo;Z. L. Gui;L. T. Li https://doi.org/10.1557/JMR.1999.0019
  12. IEMT/IMC Proceeding New PTC and NTC Thick Film Materials for Gigahertz Range Temperature Variable Attenuators A. H. Feingold;P. Amstutz;R. L. Wahlers;C. Huang;S. J. Stein
  13. Korea Patent 10-2001-0027981 S. J. Lee;J. D. Nam;S. J. Suh;J. W. Yoon
  14. Korea Patent 20-2001-0011056 S. J. Lee;J. D. Nam;S. J. Suh
  15. U. S. Patent 6,059,997 T. J. Hall
  16. J. Appl. Phys. v.81 R. Strumpler;G. Maidorn;J. Rhyner https://doi.org/10.1063/1.365222
  17. Transaction on Power Delivery v.14 R. Strumpler;J. Skindhφj;J. G. Reichenbach;J. H. W. Kuhlefelt;F. Perdoncin https://doi.org/10.1109/61.754084
  18. J. Appl. Phys. v.53 K. T. Chung;A. Sabo;A. P. Pica https://doi.org/10.1063/1.330027
  19. J. Appl. Polym. Sci. v.73 O. Breuer;R. Tchoudakov;M. Nakkis;A. Siegmann
  20. J. Appl. Polym. Sci. v.73 G. Yu;M. Q. Zhang;H. M. Zeng;Y. H. Hou;H. B. Zhang https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<489::AID-APP4>3.0.CO;2-A
  21. J. Polym. Sci., Part B: Polym. Phys v.39 M. Harpaz;M. Narkis https://doi.org/10.1002/polb.1113
  22. J. Appl. Polym. Sci. v.77 X. Zhang;Y. Pan;L. Shen;X. Yi https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<756::AID-APP7>3.0.CO;2-Y
  23. J. Appl. Polym. Sci. v.77 Y. Liu;K. Oshima;T. Yamauchi;M. Shimomura;S. Miyauchi https://doi.org/10.1002/1097-4628(20000929)77:14<3069::AID-APP70>3.0.CO;2-B
  24. J. Appl. Polym. Sci. v.80 G. Wu;C. Zhang;T. Miura;S. Asai;M. Sumita https://doi.org/10.1002/app.1191
  25. J. Appl. Polym. Sci. v.65 J. C. Lee;K. N. Ajima;T. Ikehara;T. Nishi
  26. Synthetic Metals v.102 G. Boiteux;J. Fournier;D. Issotier;G. Seytre;G. Marichy https://doi.org/10.1016/S0379-6779(98)01432-5
  27. Macromol. Symp. v.170 H. Zois;L. Apekis;M. Omastova https://doi.org/10.1002/1521-3900(200106)170:1<249::AID-MASY249>3.0.CO;2-F
  28. Anal. Chem. v.70 B. J. Coleman;R. D. Sanner;E. J. Severin;R. H. Grubbs;N. S. Lewis https://doi.org/10.1021/ac971238h
  29. J. Appl. Phys. v.53 K. T. Chung;A. Sabo;A. P. Pica https://doi.org/10.1063/1.330027
  30. Synthetic Metals v.101 Y. W. Liu;K. Oshima;T. Yamauchi;M. Shimomura;S. Miyauchi https://doi.org/10.1016/S0379-6779(98)01172-2
  31. Transaction on Electrical Insulating v.EI-20 R. D. Ford;I. M. Vitkovitsky https://doi.org/10.1109/TEI.1985.348753
  32. Electronics and Communications in Japan v.82 A. Ueno;S. Sugaya