Preparation and Characterization of Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/Glycerin/Chitosan Hydrogels by Radiation

방사선 가교에 의해 제조된 Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/글리세린/키토산 하이드로겔의 제조 및 특성

  • 박경란 (한국원자력연구소 동위원소, 방사선 응용연구팀) ;
  • 노영창 (한국원자력연구소 동위원소, 방사선 응용연구팀)
  • Published : 2002.11.01

Abstract

In this study, hydrogels from mixtures of poly (vinyl alcohol) (PVA)/poly(N-vinylpyrrolidone) (PVP)/glycerin/chitosan were prepared by γ-ray irradiation and the mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the applicability of these for wound dressing. Then PVA:PVP was weight ratio of 6 : 4, the concentration of chitosan was 0.3 wt%, the concentration of glycerin was in the range of 0∼5 wt%t. The solid concentration of PVA/PVP/glycerin/chitosan solution was 15 wt%. Gamma irradiation doses of 25, 35, 50, and 60 kGy were exposed to a mixture of PVA/PVP/glycerin/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as glycerin concentration in PVA/PVP/glycerin/chitosan decreased, and as irradiation dose increased. Swelling degree increased as glycerin concentration in PVA/PVP/glycerin/chitosan increased, and as irradiation dose decreased. The glycerin in PVA/PVP/glycerini/chitosan hydrogel prevented the transformation of shape. These hydrogel dressings had better curing effect than vaseline gauge.

본 연구에서는, 방사선($^{60}$Co ${\gamma}$-rays) 가교를 이용하여 poly(vinyl alcohol)(PVA)/poly(N-vinylpyrrolidone)(PYP)/글리세린/키토산의 혼합물로부터 하이드로겔을 제조하였다 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도 같은 기계적 성질을 측정하였다. PVV와 PVP의 조성비는 6 : 4, 키토산은 0.3 wt%, 글리세린은 0~5 wt%, PVA/PVP/글리세린/키토산 수용액의 고형분의 농도는 15 wt%이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/PVP/글리세린/키토산 혼합물에 25~60 kGy의 감마선을 조사하였다. 겔화율과 겔강도는 글리세린 조성비가 작을수록 조사선량이 커질수록 증가하였다. 팽윤도는 글리세린 조성비가 클수록, 조사선량이 작을수록 증가하였다. PVA/PVP/글리세린/키토산 하이드로겔에서 글리세린은 겔 모양의 변형을 막는다. 제조된 하이드로겔이 상업용 바셀린 거즈보다 치료 효과가 우수하였다.

Keywords

References

  1. Biocompatibility, Interactions of Biological and Implantable Materials F. H. Silver;C. Doillon
  2. Hydrogels in Medicine and Pharmacy v.I;Ⅱ;III N. A. Peppas;Boca Raton(ed.)
  3. Brit. Polym. J. v.10 D. G. Pedley;P. J. Skelly;B. J. Tighe
  4. Biomedical Applications of Hydrogels: Review and Critical Appraisal B. D. Ralner;D. F. Williams(ed.)
  5. Polymers: Biomaterials and Medical Applications V. Kudela;J. I. Kroschwitz(ed.)
  6. J. Controlled Release v.31 J. M. Rosiak https://doi.org/10.1016/0168-3659(94)90246-1
  7. Biomat. Art. Cells. Art. Org. v.18 T. Chandy;C. P. Sharma https://doi.org/10.3109/10731199009117286
  8. Chitin and Chitosan G. S. Braek;T. Anthonsen;P. Sandford
  9. Chtin, Chitosan and Related Enzymes J. P. Zikakis
  10. Biomaterials v.15 K. Burczak;T. Fujisato;M. Hatada;Y. Ikada https://doi.org/10.1016/0142-9612(94)90072-8
  11. Angew. Makromol. Chem. v.240 T. Hirai;T. Okinaka;Y. Amemiya;K. Kobayashi;M. Hirai;S. Hayashi https://doi.org/10.1002/apmc.1996.052400120
  12. Radiation Effects on Polymers Roger L. Clough;Shalaby W. Shalaby
  13. U.S. Patent No. 4,871,490 J. M. Rosiak;A. Rucinska-Rybus;W. Pekala
  14. Radiat. Phys. and Chem. v.46 no.2 J. M. Rosiak;P. Ulanski;L. A. Pajensky;F. Yoshii;K. Makuuchi https://doi.org/10.1016/0969-806X(95)00007-K
  15. Polymer v.41 C. M. Hassan;J. H. Ward;N. A. Peppas https://doi.org/10.1016/S0032-3861(00)00031-8
  16. Radiat. Phys. and Chem. v.55 C. Tranquilan-Aranilla;F. Yoshii;A. M. Dela Rosa;K. Makuuchi https://doi.org/10.1016/S0969-806X(98)00317-X
  17. Radiat. Phys. and Chem. v.55 L. F. Miranda;A. B. Lugao;L. D. B. Machado;L. V. Ramanathan https://doi.org/10.1016/S0969-806X(99)00216-9
  18. The Journal of Cell Biology v.39 G. Odlang;R. Ross https://doi.org/10.1083/jcb.39.1.135
  19. Plast & Reconstr. Surg. v.56 G. D. Winter https://doi.org/10.1097/00006534-197511000-00009
  20. Archines of Dermatology v.106 D. T. Rovee;C. A. Kurowsky;J. Labun https://doi.org/10.1001/archderm.106.3.330