DSC와 FTIR을 이용한 상용성 (폴리부틸렌나프탈레이트/폴리비닐페놀) 블렌드의 연구

DSC and FTIR Studies of Miscible Poly(butylene 2,6-naphthalate)/Poly(4-vinylphenol) Blends

  • 이준열 (경희대학교 환경ㆍ응용 화학부, 고분자 및 섬유 재료공학) ;
  • 한지영 (경희대학교 환경ㆍ응용 화학부, 고분자 및 섬유 재료공학)
  • 발행 : 2002.11.01

초록

결정성 폴리부틸렌나프탈레이트 (PBN)와 비결정성 폴리비닐페놀 (PVPh)로 구성된 2 성분계 고분자 블렌드의 열역학적 상용성을 시차주사열분석 (DSC)과 푸리에변환 적외선 (FTIR) 분광분석으로 조사하였다. PBN/PVPh 블렌드의 DSC 측정 결과로부터 블렌드 전 조성에서 단일 유리전이온도 (T$_{g}$ )가 확인되었으며, 블렌드 내의 PVPh 조성이 증가함에 따라 PBN 결정질의 용융점(T$_{m}$ ) 강하가 관찰되었다. 고분자 블렌드의 단일 T$_{g}$ 및 T$_{m}$ 강하 현상은 PBN/PVPh 블렌드가 분자 수준에서의 열역학적 상용성이 있음을 보여준다. PBN의 에스테르 카르보닐기와 PVPh의 히드록실기 사이에 강한 분자 간 수소결합이 형성됨을 FTIR 분석에 의하여 확인할 수 있었다.

Thermodynamic miscibility of the binary blends composed of semi-crystalline poly (butylene 2,6-naphthalate) (PBN) and amorphous poly (4-vinylphenol) (PVPh) was investigated using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC scan results showed that there was a single glass transition temperature (T$\_$g/) for each blend. Crystalline melting temperature (T$\_$m/) depression of the PBN in the blends was also observed with the increase of PVPh content. Both results of the single T$\_$g/ and the depression of T$\_$m/ for the PBN/PVPh blends indicate that the blends are thermodynamically miscible at the molecular level. FTIR spectroscopic analysis confirmed that strong intermolecular hydrogen bonding interactions between the ester carbonyl groups of the PBN and the hydroxyl groups of the PVPh are occurred.

키워드

참고문헌

  1. Polymeric Materials Encyclopedia v.7 Poly(alkylene naphthalate) C. S. Wang;Y. M. Sun;J. C. Salamone(ed.)
  2. ACS Polymer Preprint, Div. Polym. Chem. v.39 no.1 J. B. Barber;J. A. Siddiqui
  3. J. Appl. Polym. Sci. v.57 J. Jager;J. A. Juijin;C. J. M. Van Den Heuvel;R. A. Huijts https://doi.org/10.1002/app.1995.070571202
  4. J. Coated Fabrics v.25 J. K. Money https://doi.org/10.1177/152808379502500104
  5. Transreactions in Condensation Polymers S. Fakirov(Ed.)
  6. Polymer v.40 G. Wu;J. A. Cuculo https://doi.org/10.1016/S0032-3861(98)00317-6
  7. Macromolecules v.32 Y. Aoki;L. Li;T. Amari;K. Nishimura;Y. Arashiro https://doi.org/10.1021/ma981657w
  8. Polymer v.34 M. Guo;H. G. Zachmann https://doi.org/10.1016/0032-3861(93)90579-Y
  9. Polymer v.34 M. E. Stewart;A. J. Cox;M. Naylor https://doi.org/10.1016/0032-3861(93)90667-Y
  10. Polymer(Korea) v.24 J. K. Park;B. J. Jeong;S. H. Kim
  11. Polym. Bull. v.46 C. H. Lin;C. S. Wang https://doi.org/10.1007/s002890170074
  12. Polymer v.38 H. L. Chen https://doi.org/10.1016/S0032-3861(97)85610-8
  13. Macromolecules v.17 E. J. Moskala;S. E. Howe;P. C. Painter;M. M. Coleman https://doi.org/10.1021/ma00139a006
  14. J. Polym. Sci., Polym. Phys. Ed. v.31 L. A. Belfiore;C. Qin;E. Ueda;A. T. N. Pires https://doi.org/10.1002/polb.1993.090310405
  15. Macromolecules v.22 C. J. Serman;Y. Xu;P. C. Painter;M. M. Coleman https://doi.org/10.1021/ma00194a086
  16. Macromolecules v.24 C. J. T. Landry;D. M. Teegarden https://doi.org/10.1021/ma00015a012
  17. J. Appl. Polym. Sci. v.54 M. R. Landry;D. J. Massa;C. J. T. Landry;D. M. Teegarden;R. H. Colby;T. E. Long;P. M. Henrichs https://doi.org/10.1002/app.1994.070540801
  18. Properties of Polymers D. W. Van Krevelen
  19. Bull. Am. Phys. Soc. v.1 J. G. Fox
  20. Appl. Chem. v.2 M. Gordon;J. S. Taylor
  21. Macromolecules v.11 P. R. Couchman https://doi.org/10.1021/ma60066a018
  22. J. Polym. Sci., Polym. Lett. Ed. v.22 T. K. Kwei https://doi.org/10.1002/pol.1984.130220603
  23. Polymer v.42 G. Z. Papageorgiou;G. P. Karayammidis https://doi.org/10.1016/S0032-3861(00)00640-6
  24. Polymer v.39 G. P. Karayannidis;G. Z. Papageorgiou;D. N. Bikiaris;E. V. Tourasanidis https://doi.org/10.1016/S0032-3861(98)00011-1
  25. Polymer(Korea) v.18 S. S. Park;I. K. Kim;S. S. Im
  26. Polym. J. v.29 S. C. Lee;K. H. Yoon;J. H. Kim https://doi.org/10.1295/polymj.29.1
  27. Polym. Eng. Sci. v.28 C. Zhou;S. B. Clough https://doi.org/10.1002/pen.760280202
  28. Polymer v.42 M. Y. Ju;F. C. Chang https://doi.org/10.1016/S0032-3861(00)00888-0
  29. Macromolecules v.8 T. Nishi;T. T. Wang https://doi.org/10.1021/ma60048a040
  30. J. Res. Nalt. Bur. Stand., Sect. A. v.66 J. D. Hoffman;J. J. Weeks
  31. J. Appl. Polym. Sci. v.21 I. Ouchi;M. Hosoi;S. Shimotsuma https://doi.org/10.1002/app.1977.070211220
  32. J. Polym. Sci., Part B: Polym. Phys. v.37 T. Chiba;S. Asia;W. Xu;M. Sumita https://doi.org/10.1002/(SICI)1099-0488(19990315)37:6<561::AID-POLB8>3.0.CO;2-H
  33. Polymer v.43 M. Y. Ju;J. M. Huang;F. C. Chang https://doi.org/10.1016/S0032-3861(01)00808-4
  34. Polymer v.42 G. Z. Papageorgiou;G. P. Karayannidis https://doi.org/10.1016/S0032-3861(00)00640-6
  35. Polymer v.39 H. Koyano;Y. Yamamoto;Y. Saito;T. Yamanobe;T. Komoto https://doi.org/10.1016/S0032-3861(97)00618-6
  36. Polymer v.26 E. J. Moskala;D. F. Varnell;M. M. Coleman https://doi.org/10.1016/0032-3861(85)90034-5