Synthesis and Characterization of Polymers with the Moiety of m-Cresol as a Microbicide

항균제로서 m-크레졸의 Moiety를 가지는 고분자의 합성과 특성

  • 김우식 (경북대학교 고분자공학과) ;
  • 현석희 (경북대학교 고분자공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과) ;
  • 박이순 (경북대학교 고분자공학과)
  • Published : 2002.05.01

Abstract

By the reaction of m-cresol as a microbicide with acryloyl chloride m-cresyl acrylate (CA) was synthesized, and polymers with the moiety of m-cresol were prepared by the radical terpolymerization of CA -methylmethacrylate -acrylic acid. The contents of CA unit in the polymers were found to be 4.7 mol% and 10.1 mol% from their nuclear magnetic resonance spectra. The number -average molecular weights of the polymers were in the range of 12000 to 15000. Through the hydrolysis of the polymers m-cresol was released. The release rate of the microbicide increased with increasing PH of the release medium. This result can be attributed to enhanced proton dissociation of carboxyl group of the acrylic acid unit in the polymers. These polymers showed microbicidal activities for S. aureus as a positive microbe and E. coli as a negative microbe.

항균제인 m-크레졸을 아크릴로일클로라이드와 반응시켜 m-크레실아크릴레이트를 합성하고 이를 메틸메타크릴레이트와 아크릴산과 3성분 라디칼 공중합시켜 m-크레졸 moiety를 가지는 고분자를 합성하였다. 이들 고분자중의 m-크레실아크릴레이트단위는 핵자기공명스펙트라로부터 각각 4.7 mol%와 10.1 mol%로서 측정되었다. 이들 고분자의 수평균분자량은 12000∼15000이었다. 이들 고분자는 가수분해를 통해 m-크레졸을 방출하였고 방출되는 그 양은 pH증가에 따라 증가하였다. 이것은 고분자중의 아크릴산 단위의 카르복실기의 수소가 pH증가에 따라 해리하기 용이하기 때문인 것으로 설명된다. 아울러 이들 고분자는 양성균 S. aureus와 음성균 E. coli에 대해서 항균성을 나타내었다.

Keywords

References

  1. J. Coat Technol. v.50 C. U. Pittman, Jr.;G. A. Stahl;H. Winters
  2. U. S. Patent 5,583,230 I. Mitamura;Y. Arimatsu
  3. J.Appl.Polym.Sci. v.26 N. A. Ghanem;N. N. Messiha;N. E. Ikladious;A. F. Shaaban https://doi.org/10.1002/app.1981.070260109
  4. J. Coat. Technol. v.53 N. A. Ghanem;N. N. Messiha;M. M. Abad EI Malek;N. E. Ikladious;A. F. Shaaban
  5. J. Appl. Polym. Sci. v.36 A. F. Shaaban;A. A. Mahmoud https://doi.org/10.1002/app.1988.070360519
  6. J. Appl. Polm. Sci. v.44 A. A. Mahmoud;A. F. Shaaban;M. M. Azab;N. N. Messiha https://doi.org/10.1002/app.1992.070441021
  7. J.Mater Sci. v.29 S. H. EI-Hamouly;N. N. Messiha;K. N. Abd EI Nour https://doi.org/10.1007/BF00356833
  8. Chem. Letters T. Iida;T. Sekiya;T. Kagyama;T. Sugizeki;Moriya
  9. Eur. Pat. Appl. 0,069,559 C. M. Sghibartz
  10. J. Controlled Releases v.9 W. S. Kim;S. H. Lee;I. K. Kang;N. K. Park https://doi.org/10.1016/0168-3659(89)90097-7
  11. J. Ind. Micro. v.15 A. A. Arrags;N. Vasishtha;D. Sundberg;G. Bausch;H. L. Vincent;D. C. White https://doi.org/10.1007/BF01569980
  12. Appl. Organometal Chem. v.13 N. Voulvoulis;M. D. Scrimshaw;J. N. Lester https://doi.org/10.1002/(SICI)1099-0739(199903)13:3<135::AID-AOC831>3.0.CO;2-G
  13. Environ. Toxical Chem. v.11 I. Talosa;L. Merlin;N. De Bertrand;I. M. Bayona;J. Albaigest https://doi.org/10.1002/etc.5620110203
  14. J. Pharm. Biomed. Anal. v.17 T. Mirza;H. S. I. Tan https://doi.org/10.1016/S0731-7085(98)00032-6
  15. Japanese J. of Pharmacology v.83 F. Hamaguch;T. Tsutsui https://doi.org/10.1254/jjp.83.273
  16. J. Am. Chem. Soc. v.72 E. M. Filachione;J. H. Lengel;William P. Ratchford https://doi.org/10.1021/ja01158a050
  17. Korea Polym. J. v.6 W. S. Kim;S. W. Jung;J. K. Jang;G. H. Kim;J. K. Lee
  18. J. Appl. Polym. Sci. v.81 M. W. Huh;I. K. Kang;D. H. Lee;W. S. Kim;D. H. Lee;L. S. Park;K. E. Min;K. H. Seo https://doi.org/10.1002/app.1723