Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Rhee, John M. (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Shin, Philkyung (Department of Polymer Engineering, Bukyung National University) ;
  • Kim, In Young (Department of Polymer Engineering, Bukyung National University) ;
  • Lee, Bong (Department of Polymer Engineering, Bukyung National University) ;
  • Lee, Sang Jin (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Young Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Hai Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee, Ilwoo (Dept. of Neurosurgery, catholic University Medical College)
  • Published : 2002.06.01

Abstract

In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Keywords

References

  1. Mathods of Tissue Engineering Mathods of Tissue Engineering G. Khang;H. B. Lee;A. Atala(ed.);R. Lanza(ed.)
  2. J. Oral Maxillofac. Surg. v.45 J. O. Hollinger;J. P. Schmitz https://doi.org/10.1016/0278-2391(87)90269-2
  3. J. Bioeng. v.1 D. F. Williams;E. Mort
  4. J. Bone Joint Surg. v.73-A no.1 O. Bostman
  5. Tissue Engineering v.1 C. M. Agrawal'P. E. Gabriele;G. Niederauer;K. A. Athanasiou https://doi.org/10.1089/ten.1995.1.241
  6. Biotech. Bioeng. v.38 L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer https://doi.org/10.1002/bit.260380207
  7. Biomaterials v.14 A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(93)90049-8
  8. Biomaterials v.14 H. L. Wald;G. Sarakinos;M. D. Lyman;A. G. Mikos;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(93)90117-K
  9. J. Biomed. Mater. Res. v.27 A. G. Mikos;Y. Bao;L. G. Cima;D. E. Inber;J. P. Vacanti;R. Langer https://doi.org/10.1002/jbm.820270207
  10. J. Biomed. Mater. Res. v.34 G. G. Giodano;R. C. Thomson;S. L. Ishaug;A> G. Mikos;S. Cumber;C. A. Garcia;D. Lahiri-Munir https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<87::AID-JBM12>3.0.CO;2-M
  11. J. Biomed. Mater. Res. v.34 D. A. Grande;C. Halberstadt;G. Naughton;R. Schwartz;R. Manji https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<211::AID-JBM10>3.0.CO;2-L
  12. Biomaterials v.11 H. T. Wang;H. Palmer;R. J. Linhardt;D. R. Flanagan;E. Schmitt https://doi.org/10.1016/0142-9612(90)90026-M
  13. J. Control. Release v.37 A. Carrio;G. Schwach;J. Coudane;M. Vert
  14. J. Control. Release v.37 C. Schmidt;R. Wenz;B. Nies;F. Moll
  15. Korea Polym. J. v.7 J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  16. Bio-Med. Mater. Eng. v.9 G. Khang;J. C. Cho;J. W. Lee;J. M. Rhee;H. B. Lee
  17. Bio-Med. Mater. Eng. v.5 G. Khang;H. B. Lee;J. B. Park
  18. Bio-Med. Mater. Eng. v.5 G. Khang;H. B. Lee;J. B. Park
  19. Bio-Med. Mater. Eng. v.5 G. Khang;B. J. Jeong;H. B. Lee;J. B. Park
  20. Bio-Med. Mater. Eng. v.7 G. Khang;J. H. Jeon;J. W. Lee;S. C. Cho;H. B. Lee
  21. Polymer(Korea) v.23 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H. B. Lee
  22. Polymer(Korea) v.24 G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;Y. M. Lee;H. B. Lee
  23. Korea Polym. J. v.8 G. Khang;J. H. Lee;I. Lee;J. M. Rhee;H. B. Lee
  24. Korea Polym. J. v.9 G. Khang;M. K. Choi;J. M. Rhee;S. J> Lee;H. B. Lee;Y. Iwasaki;N. Nakabayashi;K. Ishihara
  25. Polym. Sci. Tech. v.12 G. Khang;J. M. Rhee;I. Lee;H. B. Lee
  26. J. Cell. Biochem. v.67 S. L. Voytic-Harvin;A> O. Brightman;M. R. Krine;B. Waisner;S. F. Badylak https://doi.org/10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-P
  27. J. Surg. Res. v.60 K. M. Clark;G. C. Lantz;S. K. Salibury;S. F. Badylak;M. C. Hiles;S. L. Voytik https://doi.org/10.1006/jsre.1996.0018
  28. J. Biomed. Mater. Res. v.29 M. C. Hiles;S. F. Badylak;G. C. Lantz;K. Kokini;L. A. Geddes;R. J. Morff https://doi.org/10.1002/jbm.820290714
  29. J. Surg. Res v.71 T. J. Owen;G. C. Lantz;M. C. Hiles;J. V. Vleet;B. R. Martin;L. A. Geddes https://doi.org/10.1006/jsre.1997.5148
  30. Urology v.52 B. P. Kropp;J. K. Ludlow;D. Spicer;M. K. Rippy;S. F. Badylak;M. C. Adams;M. A. Keating;R. C. Rink;R. Birhle;K. B. Thor https://doi.org/10.1016/S0090-4295(98)00114-9
  31. J. Thor. Cardiovasc. Surg. v.116 M. C. Bobotin-Jonson;P. E. Swanson;D. C. Johnson;R. B. Schuessler;J. L. Cox https://doi.org/10.1016/S0022-5223(98)00436-X
  32. Surgery v.123 A. Sugitani;J. C. Reynolds;M. Tsunboi;S. Todo https://doi.org/10.1016/S0039-6060(98)70225-9
  33. World J. Urol. v.16 B. P. Kropp https://doi.org/10.1007/s003450050064
  34. J. Biomed. Mater. Res. v.46 M. S. Sack;D. C. Gloeckner https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<1::AID-JBM1>3.0.CO;2-7
  35. J. Biomed. Mater. Res. v.27 L. E. Frees;J. C. Marquis;A. Nohira;J. Emmanual;A. G. Mikos;R. Langer https://doi.org/10.1002/jbm.820270104
  36. Polymer v.26 J. H. Aubert;S. Hulbert https://doi.org/10.1016/0032-3861(85)90186-7
  37. Makromol. Chem. Rapid Commum. v.4 S. Gogolewski;A. J. Pennings https://doi.org/10.1002/marc.1983.030041008
  38. Ind. Eng. Chem. v.17 H. L. Ritter;L. C. Drake https://doi.org/10.1021/i560148a013
  39. Polymer v.35 A. G. Mikos;A. J. Thorsen;L. A. Czerwonka;Y. Bao;R. Langer;D. N. Winslow;J. P. Vacanti https://doi.org/10.1016/0032-3861(94)90953-9
  40. Korea Polym. J. v.9 G. Kang;C. S. Park;J. M. Rhee;S. J. Lee;Y. M. Lee;I. Lee;M. G. Choi;H. B. Lee