Extensional and Complex Viscosities of Linear and Branched Polycarbonate Blends

  • Park, Jung-Hoon (Department of Chemical Engineering, Applied Rheology Center, Korea University) ;
  • Hyun, Jae-Chun (Department of Chemical Engineering, Applied Rheology Center, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical Engineering, Applied Rheology Center, Korea University) ;
  • Kim, Sung-Ryong (Polymeric Materials Group, Samyang R&D Center, Samyang Corp.) ;
  • Ryu, Seung-Chan (Polymeric Materials Group, Samyang R&D Center, Samyang Corp.)
  • Published : 2002.06.01

Abstract

Blends of the linear bisphenol-A polycarbonate (L-PC) and randomly branched bisphenol-A polycarbonate (Br-PC), prepared by co-rotating twin screw extrusion, were investigated using differential scanning calorimetry (DSC), sag resistance time tester, extensional rheometry, and advanced rheometric expansion system (ARES). From the DSC results, the glass transition temperature (T$_{g}$) of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blend, and the blend showed a single T$_{g}$, which suggests a miscible blend. The sag resistance time of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blends. From the results of rheological measurements of the L-PC/Br-PC blends, the extensional viscosity and the complex viscosity of the blends were found to increase with the increase of Br-PC in the blends. The increase of extensional viscosity and complex viscosity was related with the increase of sag resistance time with the Br-PC in the L-PC/Br-PC blends.nds.

Keywords

References

  1. Encyclopedia of Polymer Science and Engineering Encyclopedia of Polymer Science and Engineering J. Roovers
  2. Handbook of Polycarbonate Science and Technology Handbook of Polycarbonate Science and Technology D. G. Legrand;J. T. Bendler
  3. J. Polym. Sci. Polym. Chem. Ed. v.38 M. J. Marks;S. Munjal;S. Namhata, D> C. Scott;F. Bosscher
  4. ANTEC ANTEC V. DeMaio;D. Dong;A. Gupta
  5. Polymer(Korea) v.24 M. Y. Lyu;J. S. Lee;Y. L. Pae
  6. Korea Polym. J. v.9 no.3 S. Kim;J. Liu
  7. Macromolecules v.20 W. N. Kim;C. M. Burns https://doi.org/10.1021/ma00174a030
  8. J. Polym. Sci. Polym. Phys. v.28 W. N. Kim;C. M. Burns https://doi.org/10.1002/polb.1990.090280901
  9. J. Polym. Sci. Polym. Phys. v.38 Y. S. Chun;J. H. Park;J. B. Sun;W. N. Kim https://doi.org/10.1002/1099-0488(20000801)38:15<2072::AID-POLB120>3.0.CO;2-4
  10. Korea-Australia Rheol. J. v.13 J. H. Kim;M. J. Kim;C. K. Kim;J. W. Lee
  11. Polym. Eng. Sci. v.38 K. C. Cho;B. H. Lee;K. M. Hwang;H. S. Lee;S. J. Choe https://doi.org/10.1002/pen.10366
  12. Korea J. Reheol. v.8 H. W. Jung;J. S. Lee;W. N. Kim;J. C. Hyun
  13. Korea J. Reheol. v.9 H. W. Jung;K. W. Cho;J. C. Hyun
  14. Melt Rheology and Its Role in Plastics Processing Melt Rheology and Its Role in Plastics Processing J. M. Dealy
  15. J. Appl. Polym. Sci. v.72 T. Takahashi;J. I. Takimoto;K. Koyama https://doi.org/10.1002/(SICI)1097-4628(19990516)72:7<961::AID-APP12>3.0.CO;2-T
  16. Korea-Australia Rheol. J. v.11 D. G. Baird
  17. Rheology Rheology W. Macosko