Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • K. S. Chung (Animal Resource Research Center, Konkuk University) ;
  • Ko, S. A (Animal Resource Research Center, Konkuk University) ;
  • S. J. Song (Animal Resource Research Center, Konkuk University SamSung Cheil Hospital, lab of Reproductive Biology and infertility) ;
  • J. T. Do (College of Visual Image & Health, Kongju National University & Research Center for Transgenic Cloned Pigs.) ;
  • Park, Y. S. (SamSung Cheil Hospital, lab of Reproductive Biology and infertility) ;
  • Lee, H. T. (Department of National Science & technology, Seoul National University)
  • 발행 : 2002.12.01

초록

This study was constructed the correlations of the embryonic developmental rates and the frequency of chromosome aberration using ear-skin-fibroblast cell in nuclear transfer (NT) derived embryos. Karyoplast-oocyte complexes were fused and activated simultaneously, then cultured for seven days to assess development. The developmental rates of NT and in vitro fertilization (IVF) embryos were 55.4% vs 63.5%, 31.7% vs 33% and 13.4% vs 16.8% in 2 cell, 8 cell and blastocyst, respectively. Firstly, the frequency of chromosome aberrations were evaluated using fluorescent in situ hybridization (FISH) technique with porcine chromosome 1 submetacentric specific probe. Chromosome aberration was detected at day 3 on the embryo culture, the percentages of chromosomal aneuploidy in NT and IVF embryos at 4-cell stage were 40%, 31.3%, respectively. Secondly, embryonic fragmentation was evaluated at 4-cell stage embryo. Frequency of embryonic fragmentations was in 51.3% of NT, 61.3% of IVF, 28.9% of parthenogenetic activation at 4-cell stage. The proportion of fragmentation in NT embryos was higher than activation embryos. This result indicates that chromosomal abnormalities and embryonic fragments are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT related with lower implantation rate, increased abortion rate and production of abnormal fetuses.

키워드

참고문헌

  1. Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A, Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A, Meade, H. M., Godke, R. A, Gavin, W. ., Overstrom, E. W. and Echelard, Y. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17:456-461.
  2. Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S. and Bishop, M. 2000. Production of cloned pigs from in vitro systems. Nat. Biotech., 18:1055-1059
  3. Burgoyne, P. S., Holland, K. and Strephens, R. 1991. Incidence of numerical chromosome abnormalities in human pregnancy estimated from induced and spontaneous abortion data. Hum. Reprod., 6:555-565 https://doi.org/10.1093/oxfordjournals.humrep.a137379
  4. Campbell, K. H. S., McWhir, J., Ritchie, W. A. and Wilmut, J. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64-66
  5. Cassar, G., King, W. A. and King, G. J. 1994. Influence of sex on early growth of pig conceptuses. J. Reprod. Fertil., 101:317-320 https://doi.org/10.1530/jrf.0.1010317
  6. Cheong, H. T., Ikesa, K., Martinez, M. A., Kataguri, S. and Takahashi, Y. 2000. Development of reconstituted pig embryos by nuclear transfer of cultured cumulus cells. Reprod. Fertil. Dev., 12:15-20
  7. Cibelli, J. B., Stice, S. L., Gollueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, A. and Robl, J. M. 1998. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science, 280: 1256-1258 https://doi.org/10.1126/science.280.5367.1256
  8. Dasso, M. and Newport, J. W. 1990. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell, 61:811-823 https://doi.org/10.1016/0092-8674(90)90191-G
  9. Handyside, A. H. and Delhanty, J. D. A. 1997. Detection of chromosomal abnormalities in human preimplantation embryos using FISH. Assist. Reprod. Genet., 13:137-139
  10. Hassanane, M., Kovacs, A., Laurent, P., Lindblad, K. and Gustavsson, I. 1999. Stimutaneous detection of X-and Y-bearing bull spermatozoa by double colour fluorescence hybridization. Mol. Reprod. Dev., 53:407-412 https://doi.org/10.1002/(SICI)1098-2795(199908)53:4<407::AID-MRD6>3.0.CO;2-O
  11. Jantsch, M., Hamilton, B., Mayr, B. and Schweizer, D. 1990. Meiotic chromosome behaviour reflects levels of sequence divergence in Sus scrofa domestica satellite DNA Chromosome, 99:330-335
  12. Kawahara, M., Mori, T., Tanaka, H. and Shimizu, H. 2002. The suppression of fragmentation by stabilization of actin filament in porcine enucleated oocytes. Theriogenology, 58:1081-1095
  13. Kawarasaki, T., Matsumoto, K., Chikyu, M., Itagati, Y. and Horiuchi, A. 2000. Sexing of porcine embryo by in situ hybridization using chromosome Y-and I-specific DNA probes. Theriogenology, 53:1501-1509
  14. Kawarasakki, T., Sone, M., Yoshida, M. and Bamba, K. 1996. Rapid and simultaneous detection of chromosome Y-and I-bearing porcine spermatozoa by fluorescence in situ hybridization. Mol. Reprod. Dev., 43:548-553 https://doi.org/10.1002/(SICI)1098-2795(199604)43:4<548::AID-MRD18>3.0.CO;2-V
  15. King, W. A. 1990. Chromosomal abnormalities and pregnancy failure in domastic animals. In: McFeely RA(ed.), Advances in Veterinary Science and Comparative Medicine. San Diego, CA: Academic Press, 34:229-250
  16. Kopscny, V. 1989. High resolution autoradiographic studies of comparative nuc1eogenesis and genome activation during early embryo genesis in pig, man and cattle. Reprod. Nutr. Dev., 29:589-600 https://doi.org/10.1051/rnd:19890508
  17. Kuhholzer, B. and Prather, R. S. 2000. Advances of livestock nuclear transfer. Proc. Soc. Exp. BioI. Med., 224:240-245 https://doi.org/10.1046/j.1525-1373.2000.22427.x
  18. Magnuson, T., Debrot, S. and Dimpfl, J. 1985. The early lethality of autosomal monosomy in mouse. J. Exp. Zool., 236:353-360 https://doi.org/10.1002/jez.1402360313
  19. McGrath, J. and Solter, D. 1986. Nuclearcytoplasmic interactions in the mouse embryo. J. Embryol. Exp. Morph. Suppl., 97:277-289
  20. Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. and Perry, A. C. F. 2000. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 289:1188-1190
  21. Parrish, J. J., Susko-Parrish, J., Winer, M. A. and First, N. L. 1988. Capacitation of bovine sperm by heparin. BioI. Reprod., 38:1171-1180 https://doi.org/10.1095/biolreprod38.5.1171
  22. Petters, R. M. and Wells, K. D. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl., 48:61-73
  23. Pergament, E., Fiddler, M., Cho, N., Johnson, D. and Holmgren, W. J. 1994. Sexual differentiation and preimplantation cell growth. Hum. Reprod., 9:1730-1732 https://doi.org/10.1093/oxfordjournals.humrep.a138783
  24. Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y. F., Boone, J., Walker, S., Ayares, D. L., Colman, A. and Campbell, K. H. S. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407:86-90
  25. Rosenkrans, C. F., Zeng, J. R., G. Q., McNamara, G. T., Schoff, P. K. and First, N. L. 1993. Development of bovine embryos in vitro as affected by energy substrates. BioI. Reprod., 49:459-462 https://doi.org/10.1095/biolreprod49.3.459
  26. Sullivan, W., Daily, D. R., Fogarty, P., Yook, K. J. and Pimpinelli, S. 1993. Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol. Biol. Cell., 4:885-896 https://doi.org/10.1091/mbc.4.9.885
  27. Tao, T., Machaty, Z., Boquest, A. C., Day, B. N. and Prather, R. S. 1999. Development of pig embryos reconstructed by micro injection of culture fetal fibroblast cells into in vitro matured oocytes. Anim. Reprod. Sci., 56: 133-141 https://doi.org/10.1016/S0378-4320(99)00037-8
  28. Telford, N. A., Watson, A. and Schultz, G. A. 1990. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev., 26:90-100 https://doi.org/10.1002/mrd.1080260113
  29. Tsunoda, Y., Tokunaga, T. and Sugie, T. 1985. Altered sex ratio of live young after transfer of fast and slow developing mouse embryos. Gamete Res., 12:301-304 https://doi.org/10.1002/mrd.1120120308
  30. Verma, P. J., Du, Z. T., Crocker, L., Faast, R., Grupen, C. G., Mcllfatrick, S. M., Ashman, R. J., Lyons, I. G. and Nottle, M. B. 2000. In vitro development of porcine nuclear transfer embryos constructed using fetal fibroblasts. Mol. Reprod. Dev., 57:262-269 https://doi.org/10.1002/1098-2795(200011)57:3<262::AID-MRD8>3.0.CO;2-X
  31. Viuff, D., Greve, T., Avery, B., Hyttel, P., Brockhoff, P. B. and Thomsen, P. D. 2000. Chromosome aberrations in in vitro-produced bovine embryos at days 2 - 5 post-insemination. BioI. Reprod., 63:1143-1148
  32. Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R. and Yanagimachi, R. 1998. Full -term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  33. Wang, W. H., Abeydeera, L. R., Han, Y. M., Prather, R. S. and Day, B. N. 1999. Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo. BioI. Reprod., 60:1020-1028 https://doi.org/10.1095/biolreprod60.4.1020
  34. Wells, D. N., Misica, P. M., Day, T. A. and Tervit, H. R. 1997. Production of cloned lambs from an established embryonic cell line: a comparison between in vivo and in vitro matured cytoplasts. BioI. Reprod., 57:385-393 https://doi.org/10.1095/biolreprod57.2.385
  35. Wells, D. N., Misica, P. M., Tervit, H. R. and Vivanco, W. H. 1998. Adult somatic cell nuclear transfer in used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Ferti!. Dev., 10:369-378 https://doi.org/10.1071/R98109
  36. Wilmut, I., Schnieke, A. E., McWhir, J, Kind, A. J. and Campbell, K. H. S. 1997. Viable off-spring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0