Abstract
System identification and controller formulation are essential in dynamic process control. In system identification, data for system identification are obtained, and then they are analyzed so that the system model of the process is built, identified, and diagnosed. In controller formulation, the control equation is derived based on the result of the system identification. There has been much theoretical research on system identification and controller formulation. These theories are very useful when they are appropriately applied. To our regret, however, these theories are not always effectively applied in practice because the engineers and the operators who manage the process often do not have the necessary understanding of required time series analysis methods. On the other hand, because of widespread use of statistical packages, system identification such as estimating ARMA models can be done with little understanding of time series analysis methods. Therefore, it might be said that the most theoretically difficult part in practice is the controller formulation. In this paper, lists of control equations are proposed as a useful tool for practitioners to use. The tool supports bridging the gap between theory and practice in dynamic process control. Also, for some models, the generalized control equations are obtained.