Fabrication of bi-axially textured Ni tapes for YBCO coated conductors by a cold rolling process and heat treatment of Ni powder compacts

니켈 분말 성형체의 냉간압연과 열처리로 제조된 YBCO coated conductor용 양축 정렬된 니켈 테이프

  • 이동욱 (성균관대학교 신소재공학과) ;
  • 지봉기 (성균관대학교 신소재공학과) ;
  • 임준형 (성균관대학교 신소재공학과) ;
  • 정충환 (성균관대학교 신소재공학과) ;
  • 주진호 (성균관대학교 금속재료공학부) ;
  • 박순동 (한국원자력연구소 기능성재료기술개발) ;
  • 전병혁 (한국원자력연구소 기능성재료기술개발) ;
  • 홍계원 (한국산업기술대학교 전자공학부) ;
  • 김찬중 (한국원자력연구소 기능성재료기술개발)
  • Published : 2002.11.01

Abstract

Bi-axially textured Ni tapes for YBCO coated conductors were Prepared by cold rolling and heat treatment of Ni Powder compacts. The Ni powder used in this study was 5 urn in particle size and 99.99 % in purity. The process of this study consists of filling of hi powder into a rubber mold, cold-isostatically Pressing and sintering of the powder compacts at 110$0^{\circ}C$ for 6h in 96 % Ar - 4 % H$_2$ atmosphere. The sintered compacts were cold rolled with a 5 % step reduction ratio into a 100 micron-thick tapes and then heat-treated at 100$0^{\circ}C$ for various time periods. The (200) texture of Ni tape was successfully developed through the recrystallization heat treatment of the cold rolled Ni tapes. At 100$0^{\circ}C$, the degree of texture of the heat-treated Ni tapes seems not to be significantly affected by the heat-treatment time. The short heat treatment of S min was sufficient to develop the complete (200) cube texture. The degree of in-Plane and out-of-plane texture of the prepared Ni tapes was 8-10$^{\circ}$. The heat treated Ni tapes consisted of equiaxed grains with a size 50-70 microns. and the AFM sol-face roughness was as smooth as 3 nm.

Keywords

References

  1. Z. Phys. B v.64 J.G.Bednorz;K.A.Muller https://doi.org/10.1007/BF01303701
  2. Appl. Phys. Lett v.55 K.Heine;J.Tenbrink;M.Thoner https://doi.org/10.1063/1.102295
  3. Appl. Phys. Lett v.67 X.D.Wu;S.R.Foltyn;P.N.Arendt;W.R.Blumenthal;I.H.Campbell;J.D.Cotton;J.Y.Coutler;W.L.Helts;M.P.Maley;H.F.Safer;J.L.Smith https://doi.org/10.1063/1.114559
  4. Appl. Phys. Lett v.60 Y.Iijima;N.Tanabe;O.Kohno;Y.Ikeno https://doi.org/10.1063/1.106514
  5. Proceedings of the 16th International Cryogenic Engineering Conference and International Cryogenic Materials Conference K.Hasegawa;N.Yoshida;K.Fujino;H.Mukai;K.Hayashi;K.Sato;T.Ohkuma;S.Honjyo;H.Ishii;T.Hara
  6. Appl. Phys. Lett v.69 A.Goyal;D.P.Norton;J.D.Budai;M.Paranthaman;E.D.Specht;D.M.Kroeger;D.K.Christen;Q.He;B.Saffian;F.A.List;D.F.Lee;P.M.Martin;C.E.Klabunde;E.Hatfield;V.K.Silkka https://doi.org/10.1063/1.117179
  7. US patent No. 5.741.377 A.Goyal;J.D.Budai;D.M.Kroeger;D.P.Norton;E.D.Specht;D.K.Christen
  8. J. superconductivity v.481 A.Goyal;F.A.List;J.Mathis;M.Paranthaman;E.D.Specht;D.P.Norton;C.Park;D.F.Lee;D.M.Kroeger;D.K.Christen;J.D.Budai;P.M.Martin
  9. Texturen metallischer Werkstoffe G.Wassermann
  10. Metallkde v.31 H.G.Muller
  11. Structure of Metals(3rd ed.) C.S.Barett;T.B.Masalski
  12. Acta Mater. v.49 B.De Boer;J.Eickemeyer;N.Reger;L.Fernandez;G.R.;J.Richter;B.Holzapfel;L.Schultz;W.Prusseit;P.Berberich https://doi.org/10.1016/S1359-6454(01)00041-6
  13. Supercond. Sci. Technol. v.14 J.Eickemeyer;D.Selbmann;R.Opitz;B.De Boer;B.Holzapfel;L.Schultz;U.Miller https://doi.org/10.1088/0953-2048/14/3/306