Target State Estimator Design Using FIR filter and Smoother

  • Kim, Jae-Hun (Department of Electrical Engineering, Chungnam National University) ;
  • Joon Lyou (Department of Electrical Engineering, Chungnam National University)
  • Published : 2002.12.01

Abstract

The measured rate of the tracking sensor becomes biased under some operational situation. For a highly maneuverable aircraft in 3D space, the target dynamics changes from time to time, and the Kalman filter using position measurement only can not be used effectively to reject the rate measurement bias error. To cope with this problem, we present a new algorithm which incorporate FIR-type filter and FIR-type fixed-lag smoother, and demonstrate that it has the optimal performance in terms of both estimation accuracy and response time through an application example to the anti-aircraft gun fire control system(AAGFCS).

Keywords

References

  1. Automatica v.5 Adaptive Filtering A. H. Jazwinski
  2. IEEE Transactions on Aerospace and Electronic systems Variable dimension filter for maneuvering target tracking Y. Bar-Shalom;K. Birmiwal
  3. IEEE Transactions on Aerospace and Electronic Systems A Kalman tracker with a simple input estimation Y. T. Chan;J. B. Plant;J. R. Bottomley
  4. IEEE Transactions on Aerospace and Electronic Systems Tracking a maneuvering target using input estimation P. L. Bogler
  5. IEEE Transactions on Aerospace and Electronic Systems Modeling and estimation for tracking maneuveing targets R. L. Moose;H. F. Vanlandinghan;D. H. McCabe
  6. IEEE Transactions on Aerospace and Electronic systems Tracking a maneuvering target using input estimation versus interactive multiple model algorithm Y. Bar-Shalom;K. C. Chang;H. A. Blom
  7. Interim report of ADD in Korea FIR design algorithm using the kalman dynamic model and its application to the target state estimator Y. I. KIM;S. M. Goh
  8. Automatica v.25 FIR filters and recursive forms for discrete time state-space models O. K. Kwon;W. H. Kwon;K. S. Lee https://doi.org/10.1016/0005-1098(89)90027-7
  9. IEEE Trans. Atomat. Contr v.44 A receding horizon kalman FIR filter for discrete time-invariant systems W. H. Kwon;P. S. Kim;P. G. Park https://doi.org/10.1109/9.788554
  10. Automatica v.38 A receding horizon unbiased FIR filter for discrete time-invariant systems W. H. Kwon;P. S. Kim;S. H. Han https://doi.org/10.1016/S0005-1098(01)00242-4
  11. Factorization methods for Discrete Sequential Estimation F. J. Biermann
  12. Optimal eatimation F. L. Lewis
  13. Optimal filtering B. D. O. Anderson;J. B. Moore
  14. Applied Optimal Control A. E. Bryson;Jr Y. C. Ho
  15. Stochastic Optimal Linear Estimation and Control J. S. Meditch
  16. Fixed Interval Smoothing For State Space Models H. L. Weinert
  17. Fault Diagnosis in Dynamic Systems Theory and Applications R. Patton;P. Frank;R. Clark