DOI QR코드

DOI QR Code

Properties and Thermostability of Gelatin-degrading Proteinases in the Fruit of Actinidia chinensis (Kiwifruit)

Kiwifruit 과육에 존재하는 단백질분해효소의 특성과 열안정성

  • 오순자 (제주대학교 생명과학과ㆍ기초과학연구소) ;
  • 김성철 (농촌진흥청 제주농업시험장) ;
  • 고석찬 (제주대학교 생명과학과ㆍ기초과학연구소)
  • Published : 2002.12.01

Abstract

This study was investigated on properties and thermostability of gelatin-degrading proteinases in the fruit of Actinidia chinensis (kiwifruit) for the industrial application. Three gelatin-degrading proteinases (PI, PII and PIII) were detected from the pulp of fruits. The molecular weights of these proteinases, PI, PII and PIII, were approximately 220 kD, 51 kD, and 26 kD respectively, on the basis of gelatin-containing SDS-PACE. The optimum pH of these proteinases ranged from 2.0 to 5.0 with a maximal activity at pH 4.0. These proteinases had a high sensitivity to E-64 and iodoacetate which are cysteine protease inhibitors, and required DTT, cysteine, and $\beta$-mercaptoethanol for their activities which are stimulators for cysteine proteases. These results indicate that these proteinases are cysteine proteinases and the proteinase PIII is actinidin (EC 3.4.22.14), based on the molecular weight and/or susceptibility against proteinase inhibitors. These proteinases were strongly activated by $Ca^{2+}$, $Mg^{2+}$ and $Mn^{2+}$, whereas strongly inhibited by Zn$^{2+}$ and Hg$^{2+}$. However, these proteinases have slightly different susceptibility against other cations ($Ca^{2+}$, $Cu^{2+}$, $Al^{3+}$, $Ca^{3+}$. The temperature stability of proteinase PIII was more stable than proteinases PI and PII. Moreover, proteinase PIII remained stable below $50^{\circ}C$ for 48hr, showing the residual activity above 75% of the enzyme activity.

본 연구에서는 단백질분해효소의 산업적 이용을 위하여 kiwifruit 과육 속에 들어 있는 gelatin분해활성을 조사하였다. Kiwifruit 과육에는 3개의 단백질분해효소의 활성 밴드(PI, PII, PIII)가 관찰되었다. 단백질분해효소 PI은 220 kD, PII는 51 kD, PIII는 26 kD에 해당하는 것으로 추정할 수 있었다. 이들 단백질분해효소 PI, PII, PIII는 모두 pH 2.0~5.0 범위에서 높은 활성을 보였으며 pH 4.0에서 가장 높게 나타났다. 이들 단백질분해효소 PI, PII, PIII는 모두 cysteine proteinase 저해제인 E-64와 iodoacetate에 의해서 저해되었으며, cysteine proteinase를 촉진하는 DTT, cysteine 및 $\beta$-mercaptoethanol에 의해서 활성이 증가하였다. 그 중 단백질분해효소 PIII는 분자량과 효소의 특성으로 보아 actinidin (EC 3.4.22.14)과 동일한 것으로 판단되었다. 단백질분해효소 PI, PII, PIII는 모두 $Ca^{2+}$, $Mg^{2+}$$Mn^{2+}$에 의해 촉진되었으며 $Zn^{2+}$$Hg^{2+}$에 의해 완전히 저해되는 것으로 나타났다. 하지만, $Co^{2+}$, $Cu^{2+}$, $Al^{3+}$, $Fe^{3+}$ 등 금속이온의 영향이 다소 다르게 나타났다. Kiwifruit 과육의 단백질분해효소 PI, PII, PIII 중에서 PI과 PII는 온도가 증가함에 따라 활성이 점차 낮아졌으나 PIII는 비교적 안정한 것으로 조사되었다. 특히, PIII는 $50^{\circ}C$ 이내의 범위에서 48시간 경과시에도 75% 이상의 활성을 보여 이 범위의 온도에서는 상당 시간 동안 안정한 것으로 나타났다.

Keywords

References

  1. Korean J. Soc. Food Sci. v.16 no.4 The properties of proteolytic enzymes in fruits (pear, kiwifruit, fig, pineapple and papaya) Bai,Y.H.;J.H. Roh
  2. Plant proteolytic enzymes v.1 Roles of proteolytic enzymes in interactions of plants with other organisms Boller, T.;Dalling, M.J.(ed.)
  3. Industrial enzymology - The application of enzymes in industry Industrial applications: Proteins Cowan, D.;Godfrey, T.(ed.);S. West(ed.)
  4. Industrial enzymology - The application of enzymes in industry Comparison of key characteristics of industrial enzymes by type and source Godfrey, T.;Godfrey, T.(ed.);S. West(ed.)
  5. Industrial enzymology - The application of enzymes in industry Introduction to industrial enzymology Godfrey, T.;S. West;Godfrey, T.(ed.);S. West(ed.)
  6. Anal. Biochem. v.102 Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates Heussen, C.;E.B. Dowdle https://doi.org/10.1016/0003-2697(80)90338-3
  7. Daesan Journal v.4 Studies on the characterization of protease in the Korean Kiwi fruit and its possibility of industrial application Kang, B.S.;E.S. Lee;B.Y. Kim;Y.T. Hahm
  8. Korean J. Food Sci. Technol. v.21 no.4 Purification and characterization of kiwifruit protease Kim, B.J.
  9. Eur. J. Biochem. v.14 Anionic proteinase from Actinidia chinensis preparation and properties of the crystalline enzyme McDowall, M.A. https://doi.org/10.1111/j.1432-1033.1970.tb00280.x
  10. Korean J. Plant Res. v.11 no.2 Induction by salicylic acid and characterization of PR-proteinases from bulbs of Lilium formosanum Wallace Oh, S.J.;Y.C. Park;O.Y. Lee-Stadelmann;S.C. Koh
  11. Biosci. Biotech. Biochem. v.60 no.12 Purification and characterization of six kiwifruit proteases isolated with two ion-exchange resins, Toyopearl-SuperQ and Bakerbond WP-PEI Sugiyama, S.;K. Ohtsuki;K. Sato;M. Kawabata https://doi.org/10.1271/bbb.60.1994
  12. Plant Science v.106 Purification and circular dichroism studies of multiple forms of actinidin from Actinidia chinensis (kiwifruit) Tello-Solis, S.R.;M.E. Valle-Guadarrama;A. Hernandez-Arana https://doi.org/10.1016/0168-9452(95)04085-9
  13. Korean J. Soc. Food Sci. v.7 no.4 Modification of functional properties of casein by kiwifruit protease Yoon, S.;H. Choi;J. Lee

Cited by

  1. Characterization of a protease from over-matured fruits and development of a tenderizer using an optimization technique vol.20, pp.2, 2011, https://doi.org/10.1007/s10068-011-0067-9
  2. Characteristics of Crude Protease from Fruits and Traditional Korean Fermentation Starters vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1461
  3. Physicochemical properties and protease activities of microencapsulated pineapple juice powders by spray drying process vol.22, pp.1, 2015, https://doi.org/10.11002/kjfp.2015.22.1.84