Selective Synthesis and Coating of ZnO Nanomaterials

  • Lee, Jong-Soo (Dept. of Electrical Engineering, Korea University) ;
  • Myungil Kang (Dept. of Electrical Engineering, Korea University) ;
  • Park, Kwangsue (Dept. of Electrical Engineering, Korea University) ;
  • Byungdon Min (Dept. of Electrical Engineering, Korea University) ;
  • Joowon Hwang (Dept. of Electrical Engineering, Korea University) ;
  • Kihyun Keem (Dept. of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Dept. of Electrical Engineering, Korea University)
  • 발행 : 2002.06.01

초록

Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at 138$0^{\circ}C$ from ball-milled ZnO powders by a thermal evaporation procedure with an argon carrier gas without any catalysts. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice plane, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice Planes, respectively. In cathodoluminescence (CL), the energy Position of the near band-edge (NBE) peak is 3.280 eV for the 100-, 250-, and 500-nm thick nanobelts, 3.262 eV for the 100- and 250-nm thick nanorods, and 3.237 eV for the 500-nm thick nanorods. The synthesized ZnO nanorods were coated conformally with aluminum oxide (Al$_2$O$_3$) material by atomic layer deposition (ALD). $Al_2$O$_3$films were then deposited on these ZnO nanorods by ALD at a substrate temperature of 300 $^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_2O$). Transmission electron microscopy (TEM) images of the deposited ZnO nanorods revealed that 40nm-thick $Al_2$O$_3$ cylindrical shells surround the ZnO nanorods.

키워드

참고문헌

  1. J. M. Hvam, Phys. Rev. B 4 (1971) 4459
  2. C. Klingshirn, Phys. Status Solidi B 71 (1975) 547
  3. R. F. Service, Science 276 (1997) 895 https://doi.org/10.1126/science.276.5314.895
  4. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science, 292 (2001) 1897
  5. Y. F.Clen, D.M Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J.Appl Phys. 84(1998)3912
  6. D. M. bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto, Appl. Phys. Lett. 73 (1998) 103
  7. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579
  8. W. Han, S. Fan, Q. Li, Y. Hu: Science 277 (1997) 1287
  9. J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, Y. C. Lan: J. Cryst. Growth 213 (2000) 408
  10. W.S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 345 (2001) 37.
  11. Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charies M. Lieber, nature, 409 (2001) 66
  12. Z. W. Pan, Z. R Dai,Z. L. Wang: Science 291 (2001) 1947
  13. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang: Adv. Mater. 13 (2001) 113
  14. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng: Solid State Commun. 109 (1999) 677
  15. A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M.George, Thin Solid Films 292, (1997) 135
  16. Y. Nakagome, and K. Itoh, IEICE Trans. E-74, (1991) 799
  17. Kwangsue Park, Jong-Soo Lee, Man. Young Sung, Sangsig Kim, accepted to Japanese Journal of applied physics, (2002. 9)
  18. Y. Kim, S. M. Lee, C. S. Park, S, I, Lee, and M. Y. Lee, Appl. Phys. Lett. 71, (1997) 3604