DOI QR코드

DOI QR Code

Transformation of A Plant by Ascorbate Peroxidase Gene using Agrobacterium tumefaciens

Ascorbate Peroxidase 유전자의 도입에 의한 식물의 형질전환

  • 이인애 (경북대학교 농생명과학대학) ;
  • 이효신 (임목육종연구소) ;
  • 배은경 (경북대학교 농생명과학대학) ;
  • 김기용 (축산기술연구소) ;
  • 이병현 (경상대학교 축산과학부) ;
  • 손대영 (경상대학교 대학원 분자생물학과) ;
  • 조진기 (경북대학교 농생명과학대학)
  • Published : 2002.06.01

Abstract

This study was conducted to obtain the transformed tobacco (Nicotiana tubacum) plants with cytosolic ascorbate peroxidase gene(ApxSC7) using Agrobacterium tumefaciens LBA4404. A cDNA encoding the cytosolic ascorbate peroxidase of strawberry, ApxSC7, was introduced into tobacco plants via Agrobacterium-mediated gene transfer system. The expression vector, pIG-AP8, harboring ApxSC7 gene was used for production of transgenic tobacco plants. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of ApxSC7 gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot analyses revealed that the pIGap8 gene was constitutively expressed.

환경 스트레스에 의해 야기되는 활성 산소종에 의한 피해에 내성을 가지는 식물의 개발을 위하여 딸기 유래의 cytosolic ascorbate peroxidase 유전자(ApxSC7)를 Agrobacterium tume-faciens LBA4404를 매개로 형질전환 시켰다. Hygromycin으로 선발된 캘러스로부터 재분화 된 식물체는 야생형과 비교하여 형태적으로 차이를 나타내지 않았다. PCR 및 Southern blot 분석을 통하여 형질전환 식물체의 염색체 내에 ApxSC7 유전자가 integration 되었음을 확인하였다. 담배 잎으로부터 total RNA를 분리하여 Northern blot 분석을 실시한 결과, 도입된 유전자가 형질전환 식물체 내에서 지속적으로 발현된다는 것을 확인하였다.

Keywords

References

  1. An, G. 1987. Binary Ti Vectors for plant trans-formation and promoter ananlysis. Methods in Enzymology. Vol. 153. 292-305 https://doi.org/10.1016/0076-6879(87)53060-9
  2. Assada K. 1994. Production and action of active oxygen species in photosynthetic tissues. CH. Foyer, PM. Mullineaux, eds, Causes of Photo-oxidative Stress and Amelioraton of Defense Systems in Plants. CRC Press, Boca Raton, FL, pp 77-104
  3. Chilton, M.D., T.C. Currier, S.K. Farrand, A.J. Bandich, M.P. Gordon and E.W. Nester. 1974. Agrobacterium. tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall turners. Proc, Nath. Acad. Sci. USA 71:3672-3676 https://doi.org/10.1073/pnas.71.9.3672
  4. Foyer, C.H., H. Lopez-Delgado, J.F. Dat and I.M. Scott. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclimatory stress tolerace and signalling. Physiol. Plant. 100: 241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  5. Foyer, C.H. and P.M. Mullineaux. 1994. Causes of Photooxidative stress and amelioration of defense systems in plants. CRC press, Boca Raton, FL. pp. 343-364
  6. Frank Van Breusegem, Raimundo Villarroel, Marc Van Montagu, and Dirk Inze. 1995. Ascorbate Peroxidase cDNA from Maize. Plant Physiol. 107:649-650 https://doi.org/10.1104/pp.107.2.649
  7. Hiei, Y., S. Ohta, T. Komari and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J. 6(2):271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  8. Horsch, R.B., J.E. Fly, N.L. Hoffmann, D. Eichholtz, S.G. Rodgers and R.T. Fraley. 1984. A simple and general method for transferring genes into plants, Science 223:496 https://doi.org/10.1126/science.223.4635.496
  9. Kazuya Yoshimura, Takahiro lshikawa, Yoshhiro Nakamura, Masahiro Tamoi, Yoru Takada, Toshiji Tada, Keiichiro Nishmura, and Shigem Shigeoka. 1998. Comparative Study on Recombinant Chloroplastic and Cytosolic Ascorbic Peroxidase lsozymes of Spinach. Archves of Biochemistry and biophysics 353, No. 1., May. 55-63 https://doi.org/10.1006/abbi.1997.0612
  10. Kazuya Yoshimura, Yokinori Yabuta, Masahiro Tamoi, Takahiro lshikawa, and Shigeru Shigeoka. 1999. Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem. J. 338:41-48 https://doi.org/10.1042/0264-6021:3380041
  11. Lagrimini, L.M. 1991. Wound-induced deposition of polyphenols intransgenic plants overexpressing peroxidase. Plant Physiol. 96:577-583 https://doi.org/10.1104/pp.96.2.577
  12. Lagrimini, L.M., R.J. Joly, J.R. Dunlap and T.T. Liu. 1997. The consequence of peroxidase over-expression in transgenic plants on root growth and development. Plant Mol. Bilo. 33:887-895 https://doi.org/10.1023/A:1005756713493
  13. Levine, A., R. Tenhaken, R. Dixon and C. Lamb. 1994. $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive diesease resistanse res-ponse. Cell 79:583-593 https://doi.org/10.1016/0092-8674(94)90544-4
  14. Lee H.S. and J.K. Jo. 2001. Expression of Glutathione Reductase Gene in Transgenic Tobacco Plant. Korean J. of Plant Tissue Culture. 28(2):87-90
  15. McGookin R. 1984. RNA extraction by the guanidine thiocyanate procedure, In: Walker JM(ed), Methods in Molecular Biolgy. Vol. 2, Humana Press, New Jersey, pp. 113-116
  16. Muller, A.J. and R. Grafe. 1978. lsolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet 161:67-76 https://doi.org/10.1007/BF00266616
  17. Murray, M.G. and W.F. Ghompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325 https://doi.org/10.1093/nar/8.19.4321
  18. Southern, E.M. 1975. Detection of specific sequences among DNA fragments. J. Mol. Biol. 98:503-517 https://doi.org/10.1016/S0022-2836(75)80083-0
  19. Yoko Morimura, Koji Iwamoto, Toshihide Ohys, Tkao Igarashi, Yoshiko Nakamura, Akihiro Kubo, Kiyoshi Tanaka, and Tomoyoshi Ikawa. 1999. Ligh-enhanced induction of ascorbate peroxidase in Japanese radish roots during postgerminative growth. Plant Science 142:123-132 https://doi.org/10.1016/S0168-9452(99)00013-8