DOI QR코드

DOI QR Code

On entropy for intuitionistic fuzzy sets applying the Euclidean distance

  • Hong, Dug-Hun (School of Mechanical and Automotive Engineering Catholic University)
  • Published : 2002.12.01

Abstract

Recently, Szmidt and Kacprzyk[Fuzzy Sets and Systems 118(2001) 467-477] proposed a non-probabilistic-type entropy measure for intuitionistic fuzzy sets. Tt is a result of a geometric interpretation of intuitionistic fuzzy sets and uses a ratio of distances between them. They showed that the proposed measure can be defined in terms of the ratio of intuitionistic fuzzy cardinalities: of $F\bigcapF^c and F\bigcupF^c$, while applying the Hamming distances. In this note, while applying the Euclidean distances, it is also shown that the proposed measure can be defined in terms of the ratio of some function of intuitionistic fuzzy cardinalities: of $F\bigcapF^c and F\bigcupF^c$.

Keywords

References

  1. Fuzzy sets and systems v.20 no.1 Intuitionistic fuzzy sets K. Atanassov https://doi.org/10.1016/S0165-0114(86)80034-3
  2. Fuzzy sets and systems v.33 no.1 More on intuitionistic fuzzy sets K. Atanassov https://doi.org/10.1016/0165-0114(89)90215-7
  3. Fuzzy sets and systems v.61 no.2 New operations defined over the intuitionistic fuzzy sets K. Atanassov https://doi.org/10.1016/0165-0114(94)90229-1
  4. Fuzzy sets and systems v.64 Operators over interval valued intuitionistic fuzzy sets K. Atanassov https://doi.org/10.1016/0165-0114(94)90331-X
  5. Intuitionistic fuzzy sets, Theory and Applications K. Atanassov
  6. Fuzzy sets and Systems v.78 Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets P. Burillo;H. Bustince https://doi.org/10.1016/0165-0114(96)84611-2
  7. Where do we stand on maximum entropy? The Maximum Entropy Formalism E. T. Jaynes;Levine(ed.);Tribus(ed.)
  8. Introduction to the Theory of Fuzzy Subsets. Fundamental Theoretical Elements v.1 A. Kaufmann
  9. Inform. Sci. v.40 no.2 Fuzzy entropy and conditioning B. Kosko https://doi.org/10.1016/0020-0255(86)90006-X
  10. Internat. J. General Systems v.17 no.2-3 Fuzziness vs. probability B. Kosko https://doi.org/10.1080/03081079008935108
  11. Fuzzy engineering B. Kosko
  12. Inform. and Control v.20 A defined of a non-probabilistic entropy in the setting of fuzzy theory A. De. Luca;S. Termini https://doi.org/10.1016/S0019-9958(72)90199-4
  13. Fuzzy Sets and Systems v.64 Why triangular membership function W. Pedryca https://doi.org/10.1016/0165-0114(94)90003-5
  14. Fuzzy sets and Systems v.118 Entropy for intuitionistic fuzzy sets E. Szmidt;J. Kacprzyk https://doi.org/10.1016/S0165-0114(98)00402-3
  15. Fuzzy sets and Systems v.114 On distance between intuitionistic fuzzy sets E. Szmidt;J. Kacprzyk https://doi.org/10.1016/S0165-0114(98)00244-9
  16. Internat. J. General Systems v.5 On the measure of fuzziness and negation. Membership in the unit interval R. R. Yager https://doi.org/10.1080/03081077908960906
  17. Inform. and Control v.8 Fuzzy sets L. A. Zadeh
  18. Proc. Symp. on Systems Theory Fuzzy Sets and Systems L. A. Zadeh
  19. Comput. Math. Appl. v.9 no.1 A computational approach to fuzzy quantifiers in natural languages L. A. Zadeh
  20. Fuzzy Sets and Systems v.11 The role of fuzzy logic in the management of uncertainty in expert systems L. A. Zadeh https://doi.org/10.1016/S0165-0114(83)80082-7