DOI QR코드

DOI QR Code

잡파가 섞인 뇌파의 비선형 및 독립성분 분석

Nonlinear and Independent Component Analysis of EEG with Artifacts

  • 김응수 (대전대학교 대학원 전자공학과) ;
  • 신동선 (대전대학교 대학원 전자공학과)
  • 발행 : 2002.10.01

초록

뇌 기능의 연구수단으로써 널리 사용되고 있는 뇌파(Electroencephalogram, EEG)는 측정시에 노이즈(noise)나 잡파(artifact)가 섞여서 측정되기 쉽다. 본 연구에서는 뇌파에 포함된 잡파들을 분리하기 위해서 독립성분분석(ICA)을 뇌파신호에 적용하였다. 먼저 정상인의 안구운동(Eye Movement)과 관련된 잡파가 나타나는 뇌파 신호에 대해서 독립성분분석을 적용하여 소스로 추정되는 각각의 독립성분들을 분리해 내었다 분리된 신호에 대하여 잡파로 보이는 신호를 제거하고 재구성된 뇌파 신호와 잡파가 제거되기 전인 원래의 신호에 대하여 각각 상관차원(correlation dimension) 및 리아프노프 지수(Iyapunov exponent)등과 같은 비선형 분석법을 적용하여 두 신호의 유의한 차이점을 밝히고, 분리된 독립 신호들의 해부학적 발생위치 및 분포를 추정하였다. 시각적으로 복잡한 뇌파신호에 대하여 독립성분분석을 통하여 뇌 활동의 시각적, 공간적 분석이 가능함을 나타내었을 뿐만 아니라 비선형 분석을 통한 뇌파 신호의 정량적 분석을 통하여 시각적으로 복잡한 뇌파의 유의미한 변화를 관찰할 수 있었다.

In measuring EEG, which is widely used for studying brain function, EEG is frequently mixed with noise and artifact. In this study, the signals relevant to the artifact were distracted by applying ICA to EEG signal. First, each independent component which was assumed to be the source was separated by applying ICA to EEG which involved artifact relevant to the eye movement of a normal person. Next, the signal which was assumed to be artifact was removed from the separated 18 independent components, and the nonlinear analysis method such as correlation dimension and the Iyapunov exponent was applied to each reconstructed EEG signal and the original signal including artifact in order to find meaningful difference between the two signals and infer the anatomical localization of its source and distribution. This study shows it is possible not only to analyze the brain function visually and spatially for visually complex EEG signal, but also to observe its meaningful change through the quantitative analysis of EEG by means of the nonlinear analysis.

키워드

참고문헌

  1. A.J. Bell and T.J. Sejnowski, "An Information maximization approach to blind separation & blind deconvolution" , Neural Computation, Vol. 7, pp. 1129-1159, 1995. https://doi.org/10.1162/neco.1995.7.6.1129
  2. Te-Won lee, Mark Girolami and Terrence J. Sejnowski, "Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian Sources", Neural Computation, Vol. 11, No. 2, pp. 409-433, 1999.
  3. J. Jeong, J. Gore, "Independent Component Analysis to the Analysis of EEG and MEG Recordings", IEEE Trans. on Biomedical Eng., Vol. 47, No. 5, 2000.
  4. K. Kobayashi, I. Merlet and J. Gotman, "Separation of spike from background by independent component analysis with dipole modeling and comparison to intracranial recording", Clinical Neurophysiology, Vol. 112, pp. 405-413, 2001 https://doi.org/10.1016/S1388-2457(01)00457-6
  5. S. Makeig, et aI, "Independent Component Analysis of Electroencephalographic data", "Advances in Neural Information Processing Systems", Vol. 8, pp. 145-151, 1996.
  6. G. Wubbeler, et al, "Independent Component Analysis of Noninvasively Recorded Cortical Magnetic DC-Fields in humans", IEEE Trans. On Biomedical Eng., Vol. 47, No 5, pp. 594-599, 2000. https://doi.org/10.1109/10.841331
  7. R. Vigario, et aI, "Independent Component Analysis to the Analysis of EEG and MEG Recordings", IEEE Trans. on Biomedical Eng., Vol. 47, No. 5, 2000.
  8. L. Zhukov and D. Weinstein, "Independent Component Analysis for EEG source Localization", IEEE Engineering in Medicine and Biology, pp. 87-96, May/June, 2000.
  9. Th. Buzug & G. Pfister, "Comparison of algorithms calculating optimal embedding parameters for delay time coordinates", Physica D, Vol. 58, pp.127-137, 1992. https://doi.org/10.1016/0167-2789(92)90104-U
  10. N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, "Geometry from a time series", Physical Review Letters, Vol. 45, No. 9, pp.712-716, 1980. https://doi.org/10.1103/PhysRevLett.45.712
  11. Peter. Grassberger, Itamar. Procaccia, "Measuring the strangeness of strange attractors", Physica D, Vol. 9, pp. 189-208, 1993.
  12. Peter. Grassberger, ltamar. Procaccia, "Dimension and entropies of strange attractors from a fluctuating dynamic approach", Physica D, Vol. 13, pp. 34-54, 1984. https://doi.org/10.1016/0167-2789(84)90269-0
  13. Alan Wolf et at, Jack B. Swift, Harry L. Swinney and John A. Vastano, "Determining Lyapunov Exponents From a Time series", Physica D, Vol. 16, pp. 285-317, 1985. https://doi.org/10.1016/0167-2789(85)90011-9
  14. W. Lutzenberger, et aI, "Fractal dimension of electroencephalographic time series and underlying brain processes", Biological Cybernetics, Vol. 73, pp. 477-482, 1995 https://doi.org/10.1007/BF00201482
  15. H. Petsche, S. Kaplan, AV Stein, O.Filz, "The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks", Int. J. Psychophysiology, Vol. 26, pp. 77-97, 1997. https://doi.org/10.1016/S0167-8760(97)00757-5
  16. 김응수, 이유정, "EEG 독립성분과 위치추정", 한국 정보처리학회 2001년 춘계학술대회 논문집, 제8권, pp. 297-300, 2001.
  17. 최정미, "뇌전위의 물리적 모델링과 비선형분석에 의한 뇌기능연구", 한국과학기술원 석사학위 논문, 1997.
  18. 윤중수, "뇌파학 개론" 고려의학, 1999.
  19. 한선호, Satio Shoji , "임상뇌파", 일조각, 1987.
  20. 김대식, 김영배, "뇌파 검사학", 고려의학, 2001.