Structure Analysis of TiO Film on the MgO(001) Surface by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy

비행시간형 직층돌 이온산란 분광법을 사용한 MgO(001) 면에 성장된 TiO막의 구조해석

  • Hwang, Yeon (Department of Materials Science & Engineering Seoul National University of Technology) ;
  • Lee, Tae-Kun (Department of Materials Science & Engineering Seoul National University of Technology) ;
  • Park, Byung-Kyu (Department of Materials Science & Engineering Seoul National University of Technology)
  • 황연 (서울산업대학교 신소재공학과) ;
  • 이태근 (서울산업대학교 신소재공학과) ;
  • 박병규 (서울산업대학교 신소재공학과)
  • Published : 2002.06.01

Abstract

Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of epitaxially grown TiO layers on a MgO(001) surface. The hetero-epitaxial TiO layer was deposited by thermal evaporation of titanium onto the MgO(001) surface and subsequent exposure to oxygen at 400℃. The well-ordered TiO structure was confirmed with the 1×1 RHEED pattern. TOF-ICISS results revealed that the TiO layer was formed at the on-top sites of the MgO(001) substrate and that the lateral lattice constant of TiO layer was the same as that of the MgO substrate. The surface of the deposited epitaxial TiO layer was smooth without the three dimensional islands.

MgO(001)면 위에 Ti 금속을 증착시킨 후 400℃에서 산소에 노출시킴으로써 헤테로 에피탁시 TiO 막을 성장시켰다. 성장된 TiO막의 원자구조를 비행시간형 직충돌 이온산란 분광법을 사용하여 해석하였다. MgO(001)면에 성장된 에피탁시 TiO막은 다음과 같은 구조를 갖고 있음이 밝혀졌다. Ti및 O 원자가 MgO 원자의 위에 위치하여 면내방향의 격자상수는 MgO의 격자상수와 일치하고, TiO막의 표면은 3차원적 섬 형상이 없는 평활한 구조를 가지고 있다.

Keywords

References

  1. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides Cambridge University Press, Cambridge (1994)
  2. M. Aono, C. Oshima, S. Zaima, S. Otani and Y. Ishizawa, Jpn. J. Appl. Phys., 20, L829 (1981) https://doi.org/10.1143/JJAP.20.L829
  3. R. Souda, M. Aono, C. Oshima, S. Otani and Y. Ishizawa, Surf. Sci., 128, L239 (1984)
  4. R. Souda, K. Yamamoto, W. Hayami, T. Aizawa and Y. Ishizawa, Phys. Rev., B51, 4463 (1995)
  5. H. Niehus and G. Comsa, Surf. Sci., 140, 18 (1984)
  6. H. Niehus, Surf. Sci., 166, L107 (1986)
  7. L. A. Bursill and B. G. Hyde, Acta Crystallogr., B27, 210 (1971)
  8. R. Ahuja, O. Eriksson, J. M. Wills and B. Johansson, Phys. Rev., B53, 3072 (1996)
  9. D. R. Jennison and A. B. Kunz, Phys. Rev. Lett., 39, 418 (1977)
  10. L. F. Mattheiss, Phys. Rev., B5, 290 (1972)
  11. M. D. Banus, T. B. Reed and A. J. Strauss, Phys. Rev., B5, 2775 (1972)
  12. O. S. Oen, Surf. Sci., 131, L407 (1983)
  13. B. W. Dodson and P. A. Taylor, Appl. Phys. Lett., 49, 642 (1986)
  14. R. A. McKee, F. J. Walker, E. D. Specht, G. E. Jellison, Jr. and L.A. Boatner, Phys. Rev. Lett., 72, 2741 (1994)
  15. F. P. Fehner, Low Temperature Oxidation, John Wiley and Sons (1986)