DOI QR코드

DOI QR Code

Hypoglycemic and Antioxidant Effect of Dietary Hamcho Powder in Streptozotocin-induced Diabetic Rats

Streptozotocin-유발당뇨쥐에서 함초첨가 식이의 항당뇨 및 항산화 효과

  • 방미애 (목포대학교 생활과학부 식품영양전공) ;
  • 김현아 (목포대학교 생활과학부 식품영양전공) ;
  • 조영아 (목포대학교 생활과학부 식품영양전공)
  • Published : 2002.10.01

Abstract

Male Sprague-Bawler rats were blocked into four groups which were normal rats fed control diet (NC) diabetic rats fed control diet (DC), normal rats fed Hamcho powder diet (NH), and diabetic rats fed Hamcho powder diet (DH). Diabetes was induced by single injection of streptozotocin (60 mg/kg B.W. i.p.). The animals were fed ad libitum for 5 weeks. Malondialdehyde (MDA), glucose 6-phosphtase (Gspase), glutathione S-transferase (GST) glutathione Peroxidase (GPx), and glutathione reductase (GR) activities were measured in the homogenates of liver and kidney, and total lipid, total cholesterol, triglyceride, and HDL-cholesterol concentrations in the blood serum. Food and water intakes were markedly higher in diabetic groups than those of normal groups and were not significantly decreased by Hamcho powder supplementation, But, FER (Feed efficiency ratio) of DH Brood was higher than that of U group. Total cholesterol level of DH group was decreased in the second and third week, and the weekly change of blood sugar was also decreased in the 5th week. Dietary Hamcho intake showed 41.2% of hypoglycemic effect in diabetics rats. Levels of total lipid and triglycerides of DH group were lower than those of DC group. Hepatic GR activity of DH group was higher than those of other groups. However, renal GR activity was lower than those of other groups. Hepatic G6Pase activity was significantly high in DH group and reduced by Hamcho powder supplementation. GST was reduced by Hancho diet in diabetic rats. In conclusion Hamcho supplementation decreased serum lipid and glucose concentration in STZ-induced diabetic rats and this effects of Hamcho might exert antidiabetic effect of Hamcho powder diet.

염생 식물인 함초의 기능성을 규명하기 위하여 S.D.계 백서에 당뇨를 유도시킨 후 5% 함초 분말 식이로 5주간 실험 사육한 후 혈청지질ㆍ혈당농도와 주요장기의 당 대사 및 항산화 효소의 활성 변화활성을 측정하여 함초의 섭취가 당질ㆍ지질대사 및 항산화 효소계에 미치는 영향을 조사하였다. 당뇨군에서 함초의 섭취는 식이효율을 증가시켜, 당뇨에 의해 나타나는 체중감소현상을 억제하여 당뇨의 증세를 완화시켰다. 또한 함초의 섭취는 혈당강하효과 및 혈청 총 지질과 중성지방 저하효과를 보였다. 따라서 함초의 섭취는 당뇨쥐의 섭취는 당뇨쥐의 지질상승억제 및 혈당 저하 효과로 항당뇨 효능을 나타낼 수 있을 것으로 사료된다. 또한 당뇨합병증의 발생기전을 항산화효소와 관련시켜 연구하고자, 간과 시장의 항산화관련 인자를 측정한 결과, 당뇨에 의해 정상수준으로 회복되었다. 또 GR의 활성도는 함초 당뇨군(DH)의 간조직에서는 증가하였으나 신장에서는 오히려 감소하였다. 따라서 본 연구는 함초 섭취가 고혈당 및 고지혈증을 억제하고 당뇨로 인한 항산화 효소 활성변화를 정상으로 회복시킴을 밝혀 함초를 활용한 건강식품개발 위한 가능성을 제시하는 바이다.

Keywords

References

  1. Stevens MJ, Feldman EL, Greene DA. 1995. The etiology of diabetic neuropathy : The combined roles of metabolic and vascular defects. Diabetic Med 12: 1566-579.
  2. Coulston, AM, Hollenbeck CB. 1988. Source and amount of dietary carbohydrate in patients with noninsulin-dependent diagetes mellitus. Top Clin Nutr 3: 17-24
  3. Reaven GM. 1988. Role of insulin resistance in human disease.Diabetes 37: 1595-1607. https://doi.org/10.2337/diabetes.37.12.1595
  4. Adeghate E, Parvez SH. 2000. Nitric oxide and neuronal and pancreatic beta cell death. Toxicology 153: 143-156. https://doi.org/10.1016/S0300-483X(00)00310-3
  5. Reddi AS. 1986. Riboflavin nutritional status and flavoprotein enzymes in streptozotocin-diabetic rats. Biochim Biophys Acta3: 71-76.
  6. Melo SS, Arantes MR, Meirelles MS, Jordao AA Jr, Vannucchi H. 2000. Lipid peroxidation in nicotinamide-deficient and nicotinamide- supplemented rats with streptozotocin-induced diabetes. Acta Diabetol Mar 37: 33-39. https://doi.org/10.1007/s005920070033
  7. Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas JC, SgroiDC, Groff A, Ferran C, Bonner-Weir S, Sharma A, Weir GC.2002. Increased expression of antioxidant and antiapoptoticgenes in islets that may contribute to [beta]-cell survival duringchronic hyperglycemia. Diabetes 51: 413-423. https://doi.org/10.2337/diabetes.51.2.413
  8. 이창목. 1985. 한국식물도감. 향문사, 서울. p 990.
  9. 조영철, 안종훈, 이경식, 전송미 변도성, 문철. 2001. 통통마디를 이용한 식품개발에 관한 연구 I. 통통마디의 자생지별 성분특성 및 음료개발. 전라남도 수산시험 연구소 사업보고서. p 5-26.
  10. Jo YC, Ahn JH, Chon SM, Lee KS, Bae TJ, Kang DS. 2002.Studies on pharmacological effects of glasswort (Salicorniaherbacea L.). Korean J Medicinal Corp Sci 10: 93-99
  11. Baginski ES, Foa PP, Zak B. 1983. Glucose 6-phosphatase in methods of enzymematic analysis. Academic Press, New York.Vol 2, p 876-880.
  12. Ohkawa H, Ohish N, Tagi K. 1979. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. AnalBiochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  13. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferase.J Biol Chem 249: 7130-7139.
  14. Tappel AL. 1978. Glutathione peroxidase and hydroperoxides. In Methods in enzymology. Fleisher S, Packer L, eds. Academic Press, New York. Vol 52, p 506-513.
  15. Carlberg I, Mannervick B. 1985. Glutathione reductase. InMethods in enzymology. Fleisher S, Packer L, eds. Vol 113,p 484-499. https://doi.org/10.1016/S0076-6879(85)13062-4
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RT. 1951. Protein measurement with the folin phenol reagent. J Biol Chem193: 265-275.
  17. Ghosh R, Mukherjee B, Chatterjee M. 1994. A novel effect of selenium on streptozotocin-induced diabetic mice. DiabetesRes 25: 165-171.
  18. Zhang S-L, Chen X, Hsieh TJ, Leclerc M, Henley N, AllidinaA, Halle JP, Brunette MG, Filep JG, Tang SS, IngelfingerJR, Chan JS. 2000. Hyperglycemia induces insulin resistanceon angiotensinogen gene expression in diabetic rat kidneyproximal tubular cells. J Endocrinol 172: 333-344. https://doi.org/10.1677/joe.0.1720333
  19. Cho SY, Park JY, Park EM, Choi MS, Lee MK, Jeon SM,Jang MK, Kim MJ, Park YB. 2002. Alternation of hepaticantioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelionwater extract. Clin Chim Acta 317: 109-117. https://doi.org/10.1016/S0009-8981(01)00762-8
  20. Tamborlane WV, Shersin SS, Genel M, Felig P. 1979. Restoration of nirmao lipid and amino acid metabolism in diabetic patients treated with a portable insulin-infusion pump. Lancet1: 1258-1261
  21. Trinh KY, O'Doherty RM, Anderson P, Lange AJ, NewgardCB. 1998. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem 273: 31615-31620.
  22. Mithiex G, Vidal H, Zitoun C, Bruni N, Daniele N, MinassianC. 1996. Glucose 6-phosphatase mRNA and activity are increase to the same extent in kidney and liver of diabetic rats.Diabetes 45: 891-896. https://doi.org/10.2337/diabetes.45.7.891
  23. Liu Z, Barrett EJ, Dalkin AC, Zwart AD, Chou JY. 1994. Effect of acute diabetes on the rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophy Res Commun 38: 680-686.
  24. Kedziora-Kornatowska K, Luciak M. 1998. Effect of amino guanidine on lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney. Biochem Mol Biol Int 46:577-583.
  25. Celik S, Baydas G, Yilmaz O. 2002. Influence of vitamin Eon the levels of fatty acids and MDA in some tissues of diabeticrats. Cell Biochem Funct 20: 67-71 https://doi.org/10.1002/cbf.936
  26. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, KinalskaI. 2000. Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes. Acta Diabetol 37: 179-183. https://doi.org/10.1007/s005920070002
  27. Ramanathan M, Jaiswal AK, Bhattacharya SK. 1999. Superoxide dismutase, catalase and glutathione peroxidase activities in the brain of streptozotocin induced diabetic rats. Indian JExp Biol 37: 182-183.
  28. Hermenegildo C, Raya A, Roma J, Romero FJ. 1993. Decreased glutathione peroxidase activity in sciatic nerve of alloxan-induced diabetic mice and its correlation with blood glucose levels. Neurochem Res 18: 893-896. https://doi.org/10.1007/BF00998274
  29. Wohaieb SA, Godin DV. 1987. Alterations in tissue antioxidant systems in the spontaneously diabetic (BB Wistar) rat. Can J Physiol Pharmacol 65: 2191-2195. https://doi.org/10.1139/y87-346
  30. Fujita H, Haseyama T, Kayo T, Nozaki J, Wada Y, Ito S, KoizumiA. 2001. Increased expression of glutathione S-transferase in renal proximal tubules in the early stages of diabetes: a study of type-2 diabetes in the Akita mouse model. Exp Nephrol9: 380-386. https://doi.org/10.1159/000052636
  31. Kedziora-Kornatowska K, Luciak M. 1998. Effect of aminoguanidine on lipid peroxidation and activities of antioxidant enzymes in the diabetics. Biochem Mol Biol Int 46: 557-583.

Cited by

  1. Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage vol.181, pp.3, 2009, https://doi.org/10.1016/j.cbi.2009.07.017
  2. Physicochemical Characteristics and Physiological Activities of Naturally Fermented Glasswort (Salicornia herbacea L.) Juice vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1493
  3. Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages vol.34, pp.3, 2014, https://doi.org/10.5851/kosfa.2014.34.3.378
  4. Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea vol.47, pp.7, 2012, https://doi.org/10.1016/j.procbio.2012.03.011
  5. SOLID PHASE EXTRACTION OF THREE PHENOLIC ACIDS FROMSALICONIA HERBACEAL. BY DIFFERENT IONIC LIQUID-BASED SILICAS vol.35, pp.5, 2012, https://doi.org/10.1080/10826076.2011.608230
  6. The effect of swimming exercise and powdered-Salicornia herbacea L. ingestion on glucose metabolism in STZ-induced diabetic rats vol.19, pp.3, 2015, https://doi.org/10.5717/jenb.2015.15083110
  7. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications vol.32, pp.4, 2012, https://doi.org/10.3109/07388551.2011.630647
  8. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay vol.40, pp.4, 2005, https://doi.org/10.1007/BF03023520
  9. Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus vol.1, pp.4, 2007, https://doi.org/10.4162/nrp.2007.1.4.371
  10. Neuroprotective Effect of Halophyte Salicornia herbacea L. Is Mediated by Activation of Heme Oxygenase-1 in Mouse Hippocampal HT22 Cells vol.20, pp.2, 2017, https://doi.org/10.1089/jmf.2016.3829
  11. Protective effect of isorhamnetin 3-О-β-d-glucopyranoside from Salicornia herbacea against oxidation-induced cell damage vol.47, pp.8, 2009, https://doi.org/10.1016/j.fct.2009.05.002
  12. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells vol.22, pp.7, 2008, https://doi.org/10.1016/j.tiv.2008.07.013
  13. A salt substitute with low sodium content from plant aqueous extracts vol.44, pp.2, 2011, https://doi.org/10.1016/j.foodres.2010.11.018
  14. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea vol.22, pp.13, 2012, https://doi.org/10.1016/j.bmcl.2012.05.017
  15. Anti-obesity effect of Korean Hamcho (Salicornia herbaceaL.) powder on high-fat diet-induced obese rats vol.48, pp.2, 2015, https://doi.org/10.4163/jnh.2015.48.2.123
  16. Antiadipogenic activity of isohamnetin 3-O-β-D-glucopyranoside fromSalicornia herbacea vol.34, pp.6, 2012, https://doi.org/10.3109/08923973.2012.670643
  17. Dyeing properties and functionality of silk fabrics dyed with Salicornia bigelovii extracts vol.24, pp.5, 2016, https://doi.org/10.7741/rjcc.2016.24.5.577
  18. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea inhibits tumor cell invasion by regulating protein kinase C-δ-dependent matrix metalloproteinase-9 expression vol.198, pp.2, 2010, https://doi.org/10.1016/j.toxlet.2010.06.018
  19. Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.) vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.574
  20. Constituents of Corydalis heterocarpa and their anti-proliferative effects on human cancer cells vol.48, pp.2, 2010, https://doi.org/10.1016/j.fct.2009.12.002
  21. Glassworts as Possible Anticancer Agents Against Human Colorectal Adenocarcinoma Cells with Their Nutritive, Antioxidant and Phytochemical Profiles vol.14, pp.3, 2017, https://doi.org/10.1002/cbdv.201600290
  22. Evaluation of chemical constituents from Glehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells vol.45, pp.1, 2010, https://doi.org/10.1016/j.procbio.2009.08.016
  23. Effects of Salicornia herbacea Powder on Quality Traits of Sun-Dried Hanwoo Beef Jerky during Storage vol.33, pp.2, 2013, https://doi.org/10.5851/kosfa.2013.33.2.205
  24. Antiadipogenic Effect of Korean Glasswort (Salicornia herbacea L.) Water Extract on 3T3-L1 Adipocytes vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.814
  25. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid fromSalicornia herbaceaattenuates high glucose-induced hepatic lipogenesis in human HepG2 cells through activation of the liver kinase B1 and silent information regulator T1/AMPK-dependent pathway vol.57, pp.3, 2013, https://doi.org/10.1002/mnfr.201200529
  26. Production of novel vinegar having antioxidant and anti-fatigue activities fromSalicornia herbaceaL. vol.96, pp.4, 2016, https://doi.org/10.1002/jsfa.7180
  27. Effects of Enzymatic Hydrolysates from Hamcho (Salicornia herbacea L.) on Blood Glucose and Serum Lipid Composition in Streptozotocin-Induced Diabetic Rats vol.37, pp.2, 2008, https://doi.org/10.3746/jkfn.2008.37.2.170
  28. as a Potential Antioxidant and Anti-Inflammatory Agent vol.12, pp.3, 2009, https://doi.org/10.1089/jmf.2008.1072
  29. Isolation and Identification of Antioxidative Compounds in Fermented Glasswort (Salicornia herbacea L.) Juice vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1137
  30. Characteristic of Glasswort (Salicornia Herbacea L.) Mixture Fermentation Utilizing Aspergillus oryzae vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1384
  31. Development of Kanjang (Traditional Korean Soy Sauce) Supplemented with Glasswort (Salicornia herbacea L.) vol.16, pp.2, 2011, https://doi.org/10.3746/jfn.2011.16.2.165
  32. 콜레스테롤 급여 흰쥐에서 함초 요구르트의 콜레스테롤 저하효과 vol.14, pp.5, 2004, https://doi.org/10.5352/jls.2004.14.5.747
  33. 유산발효유 제조 및 품질특성에 미치는 함초 추출물 첨가의 영향 vol.14, pp.5, 2002, https://doi.org/10.5352/jls.2004.14.5.788
  34. Physiological Effect of Hamcho Yogurt on Streptozotocin-Induced Diabetic Rats vol.15, pp.4, 2002, https://doi.org/10.5352/jls.2005.15.4.619
  35. 효소처리한 함초(Salicornia herbacea) 열수추출물이 고콜레스테롤 식이 흰쥐의 지질대사에 미치는 영향 vol.35, pp.1, 2002, https://doi.org/10.3746/jkfn.2006.35.1.055
  36. 함초(Salicornia herbacea)의 효소적 가수분해물이 고콜레스테롤 식이 흰쥐의 항산화방어계에 미치는 영향 vol.35, pp.10, 2002, https://doi.org/10.3746/jkfn.2006.35.10.1356
  37. Antioxidant and Antithrombus Activities of Enzyme-Treated Salicornia herbacea Extracts vol.51, pp.2, 2007, https://doi.org/10.1159/000100826
  38. 함초 분말 첨가가 제빵적성에 미치는 영향 vol.37, pp.7, 2002, https://doi.org/10.3746/jkfn.2008.37.7.908
  39. 하수오 추출물의 혈당강하작용 vol.25, pp.3, 2008, https://doi.org/10.12925/jkocs.2008.25.3.10
  40. 함초 분말 첨가가 식빵의 품질 특성에 미치는 영향 vol.37, pp.9, 2002, https://doi.org/10.3746/jkfn.2008.37.9.1196
  41. 퉁퉁마디(Salicornia herbacea L.)에서 추출한 적자색 색소의 특성 및 안정성 vol.38, pp.7, 2002, https://doi.org/10.3746/jkfn.2009.38.7.885
  42. Bacillus subtilis를 이용하여 발효시킨 퉁퉁마디(Salicornia herbacea L.)의 품질 특성 vol.38, pp.7, 2009, https://doi.org/10.3746/jkfn.2009.38.7.902
  43. Effect of Glasswort (Salicornia herbacea L.) on Microbial Community Variations in the Vinegar-making Process and Vinegar Characteristics vol.20, pp.9, 2002, https://doi.org/10.4014/jmb.1003.03041
  44. Determination of Organic Acids in Salicornia herbacea by Solid-phase Extraction Combined with Liquid Chromatography vol.8, pp.2, 2013, https://doi.org/10.1177/1934578x1300800218
  45. 퉁퉁마디로부터 2CysPrx 유전자 분리 및 특성 분석 vol.30, pp.5, 2016, https://doi.org/10.13047/kjee.2016.30.5.810
  46. ISSR 마커를 이용한 서식 면적에 따른 퉁퉁마디의 유전적 다양성 vol.31, pp.6, 2002, https://doi.org/10.13047/kjee.2017.31.6.492
  47. Pollen morphology of the subfamily Salicornioideae (Chenopodiaceae) in Eurasia and North Africa vol.45, pp.2, 2002, https://doi.org/10.1080/01916122.2020.1784304