Antimicrobial Effects of Ocotillone Isolated from Stem Bark of Ailanthus altisshima

  • Lee, Dong-Gun (Research Center for Proteineous Materials, Chosun University) ;
  • Chang, Young-Su (College of Pharmacy, Chosun University, Research Center for Proteineous Materials, Chosun University) ;
  • Park, Yoon-Kyung (Research Center for Proteineous Materials, Chosun University) ;
  • Hahm, Kyung-Soo (Research Center for Proteineous Materials, Chosun University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University, Research Center for Proteineous Materials, Chosun University)
  • Published : 2002.10.01

Abstract

Bioassay-directed chromatographic fractionation of a methylene chloride extract of Ailanthus altisshima indicated the presence of 20(S), 24(R), epoxy-25-hydroxydammarane-3-one (compound 1, ocotillone) which was isolated from this plant, for the first time. Antimicrobial activity of compound 1 was measured by inhibition of bacterial and fungal cells growth and by a hemolytic assay with human erythrocytes, respectively. The results revealed that compound 1 had potent antibacterial activity against Cram-negative bacteria, P. aeruginosa and S. typhimurium, that were without hemolytic activity, whereas it had weak antimicrobial activity against Gram-positive bacteria and fungi. These results demonstrated that the compound 1 has more antibacterial activity against 6ram-negative bacteria, which have no hemolytic activity, than Gram-positive bacteria and fungi. This is the first report on the biological activities of the compound 1.

Keywords

References

  1. Nat. Proc. Sci. v.4 Screening of oriental herbal medicines for antibacterial activites. Bae, O. S.;J. O. Hwang;D. K. Ahn;E.-R. Woo;S. H. Seo;H. J. Kim;H. Park.
  2. J. Am. Chem. Soc. v.108 ^1H$ and ^13C$ assignments from sensitivity-enhanced detection of heteronuclear multiplebond connectivity by 2D multiple quantum nmr. Bax, A.;M. Summers. https://doi.org/10.1021/ja00268a061
  3. J. Magn. Reson. v.55 Correlatioin on proton and nitrogen-15 chemical shifts by nultiple quantum nmr. Bax, A.;R. Griffey;B. Hawkins.
  4. Biochem. v.31 Design of model amphipathic peptides having potent antimicrobial activities. Blondle, S. E.;R. A. Houghton. https://doi.org/10.1021/bi00165a020
  5. J. Antibiob. v.50 Studies on new catechol containing cephalosporins Ⅲ. Synthesis and strueture-activity relationships of cephalosporins having a pyridone moiety at the C-7 position. Choi, J. L.;J. H. Choi;A. N. Pae;Y. S. ChoH. Y. Koh;M. H. Chang;H.-K. kang;B. Y. Chung. https://doi.org/10.7164/antibiotics.50.279
  6. J. Magn. Reson. v.48 Distortionless enhancement of nmr signals by polarization transfer. Dodrell, D.;D. Pegg;M. Bendall.
  7. Chem. Pharm. Bull. v.43 Chemical evaluation of Betula species in Japan. Ⅰ. Constituents of Betula ermanii. Fuchino. H.;T. Satoh;N. Tanaka. https://doi.org/10.1248/cpb.43.1937
  8. Phyrochem. v.38 Dammarane glycosides from aerial parts of Neoalsomitra integrifoliola. Fujita, S.;R. Kasai;K. Ohtani;K. Yamasaki;M.-H. Chiu;R.-L. Nie;O. Tanaka.
  9. Nat. Prod. Sci. v.4 Studies on the antibacterial constituents from Baenongtang. Hwang, J. O.;D. K. Ahn;E.-R. Woo;H. J. Kim;S. H. Seo;H. Park.
  10. J. Microbiol. Biotechnol. v.11 A potative peptide synthetase from Bacillus subtilis 713 recognizing L- Lysine, L-Trytophan, and L-Glutamic acid. Kim, K. P.;I. H. Lee;J. W. Suh.
  11. J. Microbiol. Biotechnol. v.9 Antifungal mechanism of antifungal peptide derived from cecropin A (1-8)-melittin (1-12) hybrid against Aspergillus fumigatus. Lee, D. G.;Z. Z. Jin;C.-Y. Maeng;S. Y. Shin;M. Y. Seo;K. L. Kim;K.-S. Hahm.
  12. Annu. Rev. Immunol. v.11 Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Lehrer, R.;A. K. Lichtenstein;T. Ganz. https://doi.org/10.1146/annurev.iy.11.040193.000541
  13. Heterocycl. v.53 Dammarane triterpenoids from Amoora yunnanensis. Luo, X.-D.;S.-H. Wu;Y.-B. Ma;D.-G. Wu. https://doi.org/10.3987/COM-00-9045
  14. J. Microbiol. Biotechnol. v.11 Bacteriocin with a broad antimicrobial spectrum. produced by Bacillus sp. isolated from kimchi. Mah, J. H.;K. S. Kim;J. H. Park;M. W. Byun;Y> B. Kim;H. J. Hwang.
  15. Phytochem. v.51 Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa. Mohamad, K.;T. Sevenet;V. Dumontet;M. Pais;M. V. Tri;H. Hadi;K. Awang;M.-T. Martin. https://doi.org/10.1016/S0031-9422(99)00053-9
  16. J. Microbiol. Biotechnol. v.11 New antimicrobial activity from korean radish seeds (Raphanus sativus L.). Park, J. H.;H. K. Shin;C. W. Hwang.
  17. b-Lactam Antibiotics. How antibiotics work Richimond, M. H.;Richimond, M. H.(ed.)
  18. J. Microbiol. Biotechnol. v.9 Structure and antibiotic activity of the peptides derived from antifungal protein isolated from Aspergillus giganteus. Shin, S. Y.;J. H. Kang;D. G. Lee;Z. Z. Jin;S. Y. Jang;K. L. Kim;K.-S. Hahm.
  19. J. Biochem. Mol. Biol. Biophys. v.4 Cecropin A - magaining 2 hybird peptides having potent antimicrobial activity with low hemolytic effect. Shin, S. Y.;J. H. Kang;D. G. Lee;K.-S. Hahm.
  20. Phytochem. v.17 Dammarane saponins of leaves of Panax pseudo-ginseng. subsp. himalaicus. Tanaka, O.;S. Yahara. https://doi.org/10.1016/S0031-9422(00)94588-6
  21. Phytochem. v.32 Lup-20(29)-en-3β, 15α-diol and ocotillo-Ⅱ- from the stem bark of Phyllanthus flexuosus. Tanaka, R.;K. Masuda;S. Matsunaga. https://doi.org/10.1016/S0031-9422(00)95021-0