Characterization of the rfaD Gene Region of Bradyrhizobium japonicum 61A101C

  • Noh, Jae-Sang (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • Kim, Dong-Hyun (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • Oh, Eun-Taex (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University) ;
  • So, Jae-Seong (Department of Biological Engineering and Center for Advanced Bioseparation Technology, Inha University)
  • Published : 2002.10.01

Abstract

In our previous studies, we have cloned and characterized a gene region from Bradyrhizobium japonicum ,which is involved in the synthesis of lipopolysaccharide (LPS). In this study, we have expanded the sequence analysis of the region and found an additional open reading frame (orf), which appeared to be divergently transcribed from the rfaF gene. Sequence alignment of the orf revealed a significant similarity with rfaD genes of Salmonella typhimurium , Escherichia coli, and Neisseria gonorrhoeae. These genes encode a heptose-6-epimerase, which catalyzes the interconversion of ADP -D -glycerol-D-manno-heptose to ADP-L-glycero-D-manno-heptose. This divergent organization of the rfaF and rfaD genes is different from that of other Gram-negative bacteria where two genes form an operon. A rfaD- mutant of E. coli was successfully transformed with plasmid constructs containing the rfaD gene of B. japonicum. Novobiocin sensitivity test showed that the rfaD gene from B. japonicum could complement the rfaD mutation in E. coli, which confirms the functionality of the cloned B. japonicum gene.

Keywords

References

  1. J. Biol. Chem. v.258 The rfaD gene codes for ADP-L-glycero-D-mannoheptose-6-epimerase: An enzyme required for lipopolysaccharide inner core synthesis. Coleman, W. C.
  2. J. Bacteriol. v.173 Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. Dazzo, F. B.;G. L. Truchet;R. I. Hollingsworth;E. M. Hrabak;H. S. Pankratz;S. P. Hollingsworth;J. L. Salzwedel;K. Chapman;L. Appenzeller;A. Squartini;D. Gerhold;G. Orgmbide. https://doi.org/10.1128/jb.173.17.5371-5384.1991
  3. Appl. Environ. Microbiol. v.64 Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Dennis J. J.;G. J. Zylstra.
  4. J. Bacteriol. v.177 A mutation in the neisseria gonorrhoeae rfaD homolog results in altered lipooligosaccharide expression. Drazek, E. S.;D. D. Stein;C. D. Deal. https://doi.org/10.1128/jb.177.9.2321-2327.1995
  5. Curr. Opin. Plant Biol. v.2 Role of lectins (and rhizobial expolysaccharides) in legume nodulation. Hirsch, A. M. https://doi.org/10.1016/S1369-5266(99)80056-9
  6. J. Microbiol. Biotechnol. v.10 Cloning and characterizatioin of Pseudomonas mucidolens exoinulinase. Kwon, Y.-M.;H.-Y. Kim;Y.-J. Choi.
  7. Infect. Immun. v.65 Identification of the ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD) and heltosyltransferase (rfaF) biosynthesis genes from nontypeable Haemophilus influenzae. Nichols, W. A.;B. W. Gibson;W. Melaugh;N.-G. Lee;M. Sunshine;M. A. Apicella.
  8. J. Biol. Chem. v.247 Mechanism of assembly of the outer membrane of Salmonella typhimurium. Osborn, M. J.;J. E. Gamder;E. Parisi.
  9. J. Microbiol. Methods v.41 Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. Park, K.-M.;J.-S. So. https://doi.org/10.1016/S0167-7012(00)00155-X
  10. J. Microbiol. Biotechnol. v.10 Genetic analysis of absR, a new abs locus of streptomyces coelicollor. Park, U.;J.-W. S.;S.-K. Hong.
  11. J. Bacteriol. v.172 Cloning, expression, and characterization of Escherichia coli K-12 rfaD gene. Pegues, J. C.;L. Chen;A. W. Gorde;L. Ding;W. G. Coleman, Jr.
  12. J. Bacteriol. v.169 Cell surface polysaccharides from Bradyrhzobium japonicum and a nonnodulation mutant. Puvanesarajah, V.;F. M. Schell;D. Gerhold;G. Stacy. https://doi.org/10.1128/jb.169.1.137-141.1987
  13. Molecular Cloning: A Laboratory Manual Sambrook, J.;E. F. Fritsch;T. Maniatis.
  14. J. Bacteriol. v.176 Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaD gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium. Sirisena, D. M.;P. R. MacLachlan;S. L. Liu;A. Hessel;K. E. Sanderson. https://doi.org/10.1128/jb.176.8.2379-2385.1994
  15. FEMS Microbiol. Lett. v.83 Molecular cloning of a gene region from Bradyrhizobium japonicum essential for lipopolysaccharide synthesis. So, J.-S.
  16. FEMS Microbiol. Lett. v.190 Molecular characterization of a gene region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum: Cloning, sequencing and expression of rfaF gene. So, J.-S.;W.-S. Kim;G. Stacey. https://doi.org/10.1111/j.1574-6968.2000.tb09271.x
  17. Mol. Plant-Microbe Interac. v.4 A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation. Stacey, G.;J.-S. So;L. E. Roth;S. K. B. Lakshmi;R. W. Carlson. https://doi.org/10.1094/MPMI-4-332