Effect of Temperature, pH and Addition of Minerals in Lactic Acid Fermentation using Enterococcus faecalis RKY1.

Enterococcus faecalis RKYl을 이용한 젖산발효에서 온도, pH및 미량원소 첨가의 영향

  • 윤종선 (전남대학교 화학공학부, 생물산업기술 연구소) ;
  • 위영중 (전남대학교 화학공학부, 생물산업기술 연구소) ;
  • 오후록 (전남대학교 화학공학부, 생물산업기술 연구소) ;
  • 류화원 (전남대학교 화학공학부, 생물산업기술 연구소)
  • Published : 2002.09.01

Abstract

In this study the effects of temperature, pH, and addition of some minerals were investigated in lactic acid fermentation using Enterococcus faecalis RKYI . As a result, strain of RKYl had retained biological activity at the wide range of temperature($34-46^{\circ}C$) and pH(6.0-9.0), and the optimum temperature and pH were $42^{\circ}C$ and 7.0, respectively. When the effect of various phosphate sources added on lactic acid fermentation was studied, di-basic forms of phos-phate(especially, ammonium phosphate and potassium phosphate) had more stimulating effect rather than mono-basic phosphate sources. And there were no perceivable effect of manganese and magnecium salts addition on lactic acid fermentation.

E. faecalis RKYl을 이용한 젖산발효에서 세포성장과 젖산 생산에 대한 배양온도 및 pH의 영향을 조사한 결과온도가 낮을수록 세포성장은 향상되었으나 발효시간이 지연되어 젖산생산이 저하되었으며$ 50^{\circ}C$에서는 세포성장이 거의 없었다. pH 7.0-9.0에서 거의 비슷한 세포성장 및 젖산생산을 보였으나 pH 6.0에서는 세포성장이 저하되었고 발효시간이 지연되었으며, pH 10.0에서는 세포성장이 거의 없었다. E. faecalis RKY에 의한 젖산발효는 비교적 넓은 범위의 배양온도($34- 46^{\circ}C$)및 pH(7.0-9.0)에서 안정하였으며 최적 배양온도 및 pH 는 각각 $42^{\circ}C$, 7.0이었다. 또한 일반적으로 일인산염에 비해 이인산염을 첨가해 주었을 때 젖산생산성이 향상되었으며, 효모추출물 10g·$L^{-1}$을 질소원으로 사용하여 배양하였을때 $Mg^{2+}$$Mn^{2+}$의 첨가효과는 없는 것으로 나타났다.

Keywords

References

  1. Appl. Microbiol. Biotechnol. v.51 Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxidedismutase and metabolism Angels, M.D.;M. Gobbetti https://doi.org/10.1007/s002530051402
  2. Lactic Acid Bacteria Lactic acid bacteria: Classification and physiology Axelsson,L.T.;S.Salminen(ed.);A.Wright(ed.)
  3. A History of Lactic Acid Making Benninga,H.
  4. Appl. Nicrobiol. Biotechnol. v.51 Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems Bruno-Barcena, J.M.;A.L. Ragout;P.R. Cordoba;F. Sineriz https://doi.org/10.1007/s002530051397
  5. Int. J. Syst. Bacteriol. v.34 Enterococcus avium nom. rev., comb. nov.; E. cassliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. Collins, M.D.;D. Jones;J.A.E. Farrow;R. Kilpper-B lz;K.H. Schleifer https://doi.org/10.1099/00207713-34-2-220
  6. FEMS Microbiol. Rev. v.16 Technologucal and economic potential of poly(latic acid) and lactic acid derivatives Datta R.;S.P. Tsai;P. Bonsignore;S. H. Moon;J.R. Frank https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  7. J. Bacteriol. v.86 Physiology of the enterococci as related to their taxonamy Deibel,R.H.;D.E.Lake;C.F.Niven
  8. J. Bacteriol. v.88 fumarate reduction and its role in the diversion of glucose fermentation by Streptococcus faecalis Diebel, R.H.;M.J. Kvetkas
  9. Proc. Biochem. v.36 Effect of manganese on Lactobacillus casei fermentation to produce lacitc acid from whey permeate Fitzpatrick, J. J.;Ahrens M.;Snith S. https://doi.org/10.1016/S0032-9592(00)00265-X
  10. Z Lebensm Unters Forsch A v.206 Growth characteristics and fermentation products of Streptococcus salivarius subsp. thermophilus, Lactobacillus casei and L. fermentum in soymilk Garro,M.S.;G.F.Valdez;G.Oliver;G.S.Giori https://doi.org/10.1007/s002170050217
  11. Modern Plastics v.77 Cargill Dow to start up giant PLA plant Global report
  12. Appl. Microbiol. Biotechnol. v.51 Effect of temperature and pH on growth and product formation of Lactococcus lactis ssp. lactis ATCC 19435 growing on maltose Hofvendahl,K.;E.W.J.Niel;B.H.Hagerdal https://doi.org/10.1007/s002530051449
  13. Enzyme Microb. Technol. v.26 Factors affecting the fermentative lactic acid production from renewable resources Hofvendahl, K.;B.H. Hagerdal https://doi.org/10.1016/S0141-0229(99)00155-6
  14. Proc. Biochem. v.37 Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1 Yun,J.S.;H.W.Ryu https://doi.org/10.1016/S0032-9592(01)00205-9
  15. Lactic Acid Bacteria Lactic acid bacteria:Stability of lactic acid bacteria in fermented milk Lee, Y.K.;S.F. Wong;S. Salminen(ed.);A. Wright(ed.)
  16. J. Biochem. Microbiol. Technol. v.1 A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Luedeking,R.;E.L.Piret https://doi.org/10.1002/jbmte.390010406
  17. J. Bacteriol. v.170 Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transports Poolman, B.;W.N. Konings
  18. Int. J. Syst. Bacteriol. v.34 Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Schleifer,K.H.;R.Kilpper-Balz https://doi.org/10.1099/00207713-34-1-31
  19. U.S. pat. 5,416,020 Lactobacillus delbrueckii ssp. bulgaricus strain and fermentation process for producing L(+)-lactic acid Severson,D.K.;C.L.Barrett
  20. The Microbial World(5th ed.) Stanier, R.Y.;J.L. Ingraham;M.L. Wheelis;P.R. Painter
  21. Membr. Technol. v.109 Production of organic acids by electrodialysis/pervaporation process Tsai,S.P.;R.Datta;M.Henry;Y.Halpern;J.R.Frank
  22. Proc. Biochem. v.32 Metabolic flux analysis of lactic acid fermentation: Effects of pH and lactate ion concentration Venkatesh, K.V. https://doi.org/10.1016/S0032-9592(97)00014-9
  23. Appl. Biochem. Biotechnol. v.77-79 Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311 Zhou, Y.;J.M.;Dominguez;N. Cao;J. Du;G.T. Tsao