나노복합체 nc-TiN/a-Si$_3$N$_4$ 코팅막의 합성 및 기계적 성질

Synthesis and Mechanical Properties of nc-TiN/a-Si$_3$N$_4$ Nanocomposite Coating Layer

  • 김광호 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부) ;
  • 김수현 (부산대학교 재료공학부) ;
  • 이건환 (한국기계연구원 표면기술연구부)
  • 발행 : 2002.06.01

초록

The Ti-Si-N coating layers were synthesized on SKD 11 steel substrate by a DC reactive magnetron co-sputtering technique with separate Ti and Si targets. The high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses for the coating layers revealed that microstructure of Ti-Si-N layer was nanocomposite, consisting of nano-sized TiN crystallites surrounded by amorphous $Si_3$$N_4$ phase. The highest hardness value of about 39 GPa was obtained at the Si content of ~11at.%, where the microstructure had fine TiN crystallites (about 5nm in size) dispersed uniformly in amorphous matrix. As the Si content in Ti-Si-N films increased, the TiN crystallites became from aligned to randomly oriented microstructure, finer, and fully penetrated by amorphous phase. Free Si appeared in the layers due to the deficit of nitrogen source at higher Si content. Friction coefficient and wear rate of the Ti-Si-N coating layer significantly decreased with increase of relative humidity. The self-lubricating tribe-layers such as $SiO_2$ or (OH)$Si_2$ seemed to play an important role in the wear behavior of Ti-Si-N film against steel.

키워드

참고문헌

  1. T. Cselle and A. Barimani : Surf. Coat. Te-chnol., 76-77 (1995)712 https://doi.org/10.1016/0257-8972(96)80011-9
  2. H. Ichimura and A. Kawana : J. Mater. Res., 8(1993) 1093 https://doi.org/10.1557/JMR.1993.1093
  3. J.-W. He, D.-D. Bai, K.-W. Xe and N.-S. Hu :Surf. Coat. Technol, 74-75 (1995) 387 https://doi.org/10.1016/0257-8972(95)08371-5
  4. W. D. M nz : J. Vac. Sci. Technol, A 4(6)(1986) 2717 https://doi.org/10.1116/1.573713
  5. O. Knotec, M. Bhmer and T. Leyendecker : J Vac.Sci.Technol.,A4(6) (1986) 2695
  6. E. V. Shalaeva, S. V. Bohsov, O. F. Denisov, M.V. Kuznetsov : Thin Solid Films., 339 (1999)129 https://doi.org/10.1016/S0040-6090(98)01259-0
  7. L. Shizhi, S. Yulong and P. Hongrui : PlasmaChem. Plasma Process, 12 (3) (1992) 287 https://doi.org/10.1007/BF01447027
  8. S. Veprek, S. Reiprich and L. Shizhi : Appl.Phys. Lett., 66 (20) (1995)2640 https://doi.org/10.1063/1.113110
  9. M. Diserens, J. Patscheider and F. Lvy : Surf Coat.Technol, 108-109 (1998) 241 https://doi.org/10.1016/S0257-8972(98)00560-X
  10. F. Vaz, L. M. Rebouta, S. Ramos, M. F. da Silvaand J. C. Soares : Surf. Coat. Technol., 108-109 (1998) 236 https://doi.org/10.1016/S0257-8972(98)00620-3
  11. S.Veprek : Surf. Coat. Technol., 97 (1997) 15 https://doi.org/10.1016/S0257-8972(97)00279-X
  12. M. Diserens, J. Patscheider and F. Lvy : Surf. Goat.Technol.,120-121 (1999) 158
  13. J. F. Moulder, W. F. Stickle, P. E. Sobol and KD.Bomben : Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., Minnesota, (1995) 238,240
  14. S. Veprek and S. Reiprich : Thin Solid Films268 (1995) 64 https://doi.org/10.1016/0040-6090(95)06695-0
  15. S. Wilson and A, T. Alpas : Wear., 245 (2000)223 https://doi.org/10.1016/S0043-1648(00)00482-8
  16. J. Takadoum, H. Houmid-Bennani and D. Mai-rey : J. Eur. Ceram. Soc., 18 (1998) 553 https://doi.org/10.1016/S0955-2219(97)00157-X