Evolution of Glaucony in the Tertiary Marine Sediments in the Pohang Area, SE Korea

포항지역 제3기 해성퇴적층에서의 해록석 진화

  • Byeong-Kook Son (Korea Institute of Geoscience and Mineral Resources (KIGMA)) ;
  • Sang-Mo Koh (Korea Institute of Geoscience and Mineral Resources (KIGMA)) ;
  • Hag-Ju Kim (Korea Institute of Geoscience and Mineral Resources (KIGMA))
  • Published : 2002.09.01

Abstract

Glauconization was investigated by morphological and chemical analysis of glaucony from the Pohang Tertiary marine sediments. The glaucony, which is present sparsely in turbidite sandstones, shows two distinct stages in morphology and chemistry. Crystallization of glaucony starts preferentially from the interior of pellet-like grains, then to the outer region of the grains with increasing K and Fe, and decreasing Al. Furthermore, smectite-like glaucony is evolved into illite-like glaucony through interstratified glauconite-smectite with increases in K and Al, and decrease in Fe.

포항지역 제3기 해성퇴적층에서 산출되는 해록석의 생성과정을 해록석 형태와 화학분석에 의하여 연구하였다. 사암 내에서 산발적으로 산출되는 해록석은 뚜렷한 두 단계의 광물형태와 성분변화가 나타난다. 해록석의 결정화는 펠 형태 입자의 내부에서 우선적으로 시작되어 외부쪽으로 K와 Fe 성분이 증가하고 Al 성분이 감소하는 경향을 보인다 더욱이 스멕타이트와 비슷한 조성의 해록석은 K와 Al 성분이 증가하고 Fe 성분이 감소하면서 해록석/스멕타이트 혼합층광물 단계를 거쳐서 일라이트와 비슷한 조성의 해록석으로 진화하여 간다.화하여 간다.

Keywords

References

  1. Amorosi, A. (1995) Glaucony and sequence stratigraphy: A conceptual framwork of distribution in siliciclastic sequences. Jour. Sed. Res. , 1365,419-425.
  2. Burst, 1. F. (1958a) ‘Glauconite’ pellets: Their mineral nature and applications to stratigraphic interpretaions. AAPG Bulletin, 42, 310-327.
  3. Burst, J. F. (1958b) Mineral heterogeneity in ‘glauconite‘ pellets. Am. Min., 43, 481-497.
  4. Hower, J. (1961) Some factors concerning the nature and origin of glauconite. Am. Min., 46, 313-335.
  5. Hower, 1., Eslinger, E.V., Hower, M.E., and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87, 725-737.
  6. Lee, C. H., Choi, S.-W., and Suh, M. (2002) High iron glaucony from the continental shelf of the Yellow Sea, off the Southwestern Korea, Jour, Asian Earth Sci., 20, 507-515.
  7. Lee, Y. I. and Paik, I. S. (1997) High alumina glaucony from the Early Ordovician Myngok formation, Korea. Geosci, Jour., L 108-114.
  8. Newman. A.C.D. and Brown. G. (1987) The chemical constitution of clays. In: A.C.D. Newman, (ed.) Chemistry of Clays and Clay Minerals, Miner. Soc. Monograph, No.6, Longman Scientific and Technical, 1-128.
  9. Odin, G. S. (1988) Green marine clays, Oolitic ironstone facies, verdine facies, glaucony facies and celadonite-bearing facies- A comparative study. Developments in Sedimentology 45. Elsevier. 445p.
  10. Odin. G. S. and Matter. A (1981) De glauconiarum origine. Sedimentology, 28, 611-641.
  11. Odom, E. (1984) Glauconite and celadonite minerals. In: S.W. Bailey (ed.) Illite. Reviews in Mineralogy, Min. Soc. Am., 13, 495-544.
  12. Son, B.-K. (1996) Mineralogy and diagenesis of intcrstratified liS in the Tertiary Yeonil sediments, SE Korea. Clay Sci., 9, 359-384.
  13. Son, B.-K. and Yoshimura, T. (1997) The smectiteto-illite transition in the Koyoshigawaoki well in the Akita sedimentary basin, Northeast .Japan. Clay Sci., 10. 163-184.
  14. Son, B.-K. Yoshimura, T., and Fukasawa, H. (2001) Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene to Pleistocene rocks of the Niigata basin, .Japan. Clays Clay Min., 49, 333-346.
  15. Strickler. M. E. and Ferrell Jr.. R. E. (1990) fe substitution for Al in glauconite with increasing diagenesis in the first Wilcox sandstone (Lower Eocene), Livingstone Parish, Louisiana. Clays Clay Min., 38. 69-76.