Abstract
A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode shapes of hollow bodies of revolution (i.e., thick shells), not limited to straight line generators or constant thickness. The middle surface of the shell may have arbitrary curvatures, and the wall thickness may vary arbitrarily. Displacement components$U_\Phi, U_z, U_\theta$ in the meridional, normal and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in$\theta$, and algebraic polynomials in the$\Phi$and z directions. Potential(strain) and kinetic energies of the entire body are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degrees of the polynomials are increased, frequencies converge to the exact values. Novel numerical results are presented for two types of thick conical shells and thick spherical shell segments having linear thickness variations. Convergence to four digit exactitude is demonstrated for the first five frequencies of both types of shells. The method is applicable to thin shells, as well as thick and very thick ones.
속이 빈 축대칭 회전체인 두꺼운 쉘의 정확한 고유진동수와 모우드형상을 결정하기 위해서 3차원적인 해석방법이 사용되었다. 이 축대칭 회전쉘의 모선을 직선으로 한정하지 않았으며, 쉘의 두께 또한 일정한 것으로 제한하지 않았다. 이 쉘의 중앙면은 임의의 곡율을 가지며, 쉘의 두께도 임의적으로 변한다. 자오선방향, 두께방향, 원주방향으로의 변위 성분인$U_\Phi, U_z, U_\theta$는 시간반응의 정현성(sinusoidal)과$\theta$방향으로의 주기성을 지니며,$\Phi$와 z 방향으로는 대수다항 식의 형태로 가정되었다. 이 쉘의 변형률에너지와 운동에너지를 공식화하였으며, 진동수의 최소화를 통해 상위경계치의 진동수를 구하고 다항식의 차수를 증가시켜 엄밀해에 수렴된 진동수를 구할 수 있다. 선형적으로 두께가 변하는 두꺼운 원추형쉘과 구형쉘에 대한 예를 통하여 하위 다섯 개의 진동수에 대해서 유효 숫자 4자리까지의 정확한 수렴성연구가 이루어졌다. 이 해석 방법은 두께가 매우 두꺼운 쉘 뿐만이 아니라 얇은 쉘에도 적용이 가능하다