References
- Proc. Amer. Math. Soc. v.68 Weak convergence to the fixed point of an asymptotically nonexpansive map S. C. Bose https://doi.org/10.1090/S0002-9939-1978-0493543-4
- Colloq. Math. v.65 Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property F. E. Bruck;T. Kuczumow;S. Reich https://doi.org/10.4064/cm-65-2-169-179
- Number Funct. Anal. Optimiz v.15 Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces C. E. Chidume;M. O. Osilike https://doi.org/10.1080/01630569408816593
- Proc. Amer. Math. Soc. v.35 A fixed point theorem for asymptotically nonexpansive mappings K. Goebel;W. A. Kirk https://doi.org/10.1090/S0002-9939-1972-0298500-3
- Ph. D. thesis, University of Missouri-Rolla Fixed points theory and stability results for fixed point iteration procedures A. M. Harder
- Math. Japon v.33 A stable iteration procedure for nonexpansive mappings A. M. Harder;T. L. Hicks
- Math. Japon v.33 Stability results for fixed point iteration procedures A. M. Harder;T. L. Hicks
- J. Math. Soc. Japan v.19 Nonlinear semigroups and evolution equations T. Kato https://doi.org/10.2969/jmsj/01940508
- Israel J. Math. v.17 Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type W. A. Kirk https://doi.org/10.1007/BF02757136
- J. Math. Anal. Appl. v.194 Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces L. S. Liu https://doi.org/10.1006/jmaa.1995.1289
- J. Math. Anal. Appl. v.227 Stability of the Mann and Ishikawa iteration procedures for φ-strong pseudo-contractions and nonlinear equations of the φ-strongly accretive type M. O. Osilike https://doi.org/10.1006/jmaa.1998.6075
- Proc. Amer. Math. Soc. v.84 Construction of fixed points for asymptotically nonexpansive mappings G. B. Passty
- J. Math. Anal. Appl. v.56 Comments on two fixed point iteration methods B. E. Rhoades https://doi.org/10.1016/0022-247X(76)90038-X
- Bull. Austral. Math. Soc. v.43 Weak and strong convergence to fixed points of asymptotically nonexpansive mappings J. Schu https://doi.org/10.1017/S0004972700028884
- J. Math. Anal. Appl. v.158 Iterative construction of fixed points of asymptotically nonexpansive mappings J. Schu https://doi.org/10.1016/0022-247X(91)90245-U
- Proc. Amer. Math. Soc. v.122 Fixed point iteration processes for asymptotically nonexpansive mappings K. K. Tan;H. K. Xu https://doi.org/10.1090/S0002-9939-1994-1203993-5
- Nonlinear Anal. v.16 Existence and convergence for fixed points of mappings of asymptotically nonexpansive type H. K. Xu https://doi.org/10.1016/0362-546X(91)90201-B
Cited by
- Convergence theorem for fixed points of nearly uniformly -Lipschitzian asymptotically generalized -hemicontractive mappings vol.71, pp.12, 2009, https://doi.org/10.1016/j.na.2009.06.091
- The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps vol.289, pp.1, 2004, https://doi.org/10.1016/j.jmaa.2003.09.057
- Convergence and summable almost T-stability of the random Picard-Mann hybrid iterative process vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0815-0
- On the equivalence of the convergence criteria between modified Mann–Ishikawa and multi-step iterations with errors for successively strongly pseudo-contractive operators vol.180, pp.2, 2006, https://doi.org/10.1016/j.amc.2005.12.041
- A Weak Convergence Theorem for Total Asymptotically Pseudocontractive Mappings in Hilbert Spaces vol.2011, 2011, https://doi.org/10.1155/2011/859795