DOI QR코드

DOI QR Code

DARBOUX TRANSFORMS AND ORTHOGONAL POLYNOMIALS

  • Published : 2002.08.01

Abstract

We give a new interpretation of Darboux transforms in the context of orthogonal polynomials and find conditions in or-der for any Darboux transform to yield a new set of orthogonal polynomials. We also discuss connections between Darboux trans-forms and factorization of linear differential operators which have orthogonal polynomial eigenfunctions.

Keywords

References

  1. Math. Z. v.29 $\"{U}$ber Sturm-Liouvillesche Polynomsysteme S. Bochner https://doi.org/10.1007/BF01180560
  2. An Introduction to Orthogonal Polynomials T. S. Chihara
  3. Proc. Amer. Math. Soc. v.8 On co-recursive orthogonal polynomials T. S. Chihara
  4. Symmetries and Integrability of Differential Equations, Esterel, 1994, CRM Proc. Lecture Notes v.9 Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation F. A. Gr$\"{u}$nbaum;L. Haine;D. Levi(ed.);L. Vinet(ed.);P. Winternitz(ed.)
  5. Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Progr. Nonlinear Differential Equations v.26 A theorem of Bochner, revisited F. A. Gr$\"{u}$nbaum;L. Haine;A. S. Fokas(ed.);I. M. Gelfand(ed.)
  6. IMRN (Internat. Mat. Res. Notices) v.8 Bispectral Darboux transformation: An extention of the Krall polynomials F. A. Gr$\"{u}$nbaum;L. Haine
  7. J. Comput. Appl. Math. v.106 Some functions that generalize the Krall-Laguerre polynomials F. A. Gr$\"{u}$nbaum;L. Haine;E. Horozov https://doi.org/10.1016/S0377-0427(99)00069-2
  8. The Pennsylvania State College Studies No.6 On orthogonal polynomials satisfying a certain fourth order differential equation H. L. Krall
  9. Bull. Korean Math. Soc. v.36 Compatible pairs of orthogonal polynomials D. H. Kim;K. H. Kwon;D. W. Lee;F. $Marcell\'{a}n$
  10. Annali di Matem. Pura ed Appl. On kernel polynomials and self perturbation of orthogonal polynomials K. H. Kwon;D. W. Lee;F. Marcellan;S. B. Park
  11. SIAM J. Math. Anal. v.25 no.3 Characterizations of orthogonal polynomials satisfying differential equations K. H. Kwon;L. L. Littlejohn;B. H. Yoo https://doi.org/10.1137/S0036141092236437
  12. J. Approximation Theory v.112 no.2 Orthogonal Polynomial Solutions of Spectral Type Differential Equations: Magnus' Conjecture K. H. Kwon;L. L. Littlejohn;G. J. Yoon https://doi.org/10.1006/jath.2001.3586
  13. J. Comput. Appl. Math. v.116 Generalized Hahn's theorem K. H. Kwon;G. J. Yoon https://doi.org/10.1016/S0377-0427(99)00319-2
  14. Quaestiones Math. v.5 The Krall polynomials: a new class of orthogonal polynomials L. L. Littlejohn https://doi.org/10.1080/16073606.1982.9632267
  15. Indag. Math., N. S. v.6 Orthogonal polynomials and coherent pairs : the classical case F. $Marcell\'{a}n$;J. Petronilho https://doi.org/10.1016/0019-3577(95)93197-I
  16. J. Comput. Appl. Math. v.85 Rational spectral transformations and orthogonal polynomials A. Zhedanov https://doi.org/10.1016/S0377-0427(97)00130-1

Cited by

  1. Spectral transformations for Hermitian Toeplitz matrices vol.202, pp.2, 2007, https://doi.org/10.1016/j.cam.2006.02.041
  2. Polynomial perturbations of bilinear functionals and Hessenberg matrices vol.414, pp.1, 2006, https://doi.org/10.1016/j.laa.2005.09.010
  3. Some Inverse Problems for d-Orthogonal Polynomials vol.10, pp.2, 2013, https://doi.org/10.1007/s00009-012-0225-1
  4. Direct and inverse polynomial perturbations of hermitian linear functionals vol.163, pp.8, 2011, https://doi.org/10.1016/j.jat.2011.02.014
  5. Using D-operators to construct orthogonal polynomials satisfying higher order q-difference equations vol.424, pp.1, 2015, https://doi.org/10.1016/j.jmaa.2014.11.011
  6. Christoffel Transformations for Matrix Orthogonal Polynomials in the Real Line and the non-Abelian 2D Toda Lattice Hierarchy 2016, https://doi.org/10.1093/imrn/rnw027
  7. A new algorithm for computing the Geronimus transformation with large shifts vol.54, pp.1, 2010, https://doi.org/10.1007/s11075-009-9325-9
  8. Asymptotics of orthogonal polynomials generated by a Geronimus perturbation of the Laguerre measure vol.433, pp.1, 2016, https://doi.org/10.1016/j.jmaa.2015.08.002
  9. Multiple Geronimus transformations vol.454, 2014, https://doi.org/10.1016/j.laa.2014.04.024
  10. Orthogonal polynomials and perturbations on measures supported on the real line and on the unit circle. A matrix perspective vol.34, pp.3, 2016, https://doi.org/10.1016/j.exmath.2015.12.007
  11. On polynomials associated with an Uvarov modification of a quartic potential Freud-like weight vol.281, 2016, https://doi.org/10.1016/j.amc.2016.01.048
  12. Using -operators to construct orthogonal polynomials satisfying higher order difference or differential equations vol.174, 2013, https://doi.org/10.1016/j.jat.2013.06.004
  13. Orthogonal polynomials and measures on the unit circle. The Geronimus transformations vol.233, pp.5, 2010, https://doi.org/10.1016/j.cam.2007.11.023
  14. OPUC, CMV matrices and perturbations of measures supported on the unit circle vol.485, 2015, https://doi.org/10.1016/j.laa.2015.07.026
  15. Multivariate orthogonal polynomials and integrable systems vol.302, 2016, https://doi.org/10.1016/j.aim.2016.06.029
  16. A canonical Geronimus transformation for matrix orthogonal polynomials 2017, https://doi.org/10.1080/03081087.2017.1299089
  17. Linear Spectral Transformations and Laurent Polynomials vol.6, pp.3, 2009, https://doi.org/10.1007/s00009-009-0008-5
  18. Zeros of orthogonal polynomials generated by canonical perturbations of measures vol.218, pp.13, 2012, https://doi.org/10.1016/j.amc.2011.12.073
  19. Orthogonal Polynomials Satisfying Higher-Order Difference Equations vol.36, pp.3, 2012, https://doi.org/10.1007/s00365-012-9162-2
  20. Transformations of matricial α-Stieltjes non-negative definite sequences vol.439, pp.12, 2013, https://doi.org/10.1016/j.laa.2013.10.002
  21. Darboux transformations for CMV matrices vol.298, 2016, https://doi.org/10.1016/j.aim.2016.03.042
  22. Geronimus spectral transforms and measures on the complex plane vol.219, pp.2, 2008, https://doi.org/10.1016/j.cam.2007.06.017
  23. Analytic properties of Laguerre-type orthogonal polynomials vol.22, pp.2, 2011, https://doi.org/10.1080/10652469.2010.499737
  24. CMV Biorthogonal Laurent Polynomials: Perturbations and Christoffel Formulas vol.140, pp.3, 2018, https://doi.org/10.1111/sapm.12202
  25. Stochastic LU factorizations, Darboux transformations and urn models vol.55, pp.3, 2018, https://doi.org/10.1017/jpr.2018.55
  26. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations vol.51, pp.20, 2018, https://doi.org/10.1088/1751-8121/aab9ca