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DARBOUX TRANSFORMS AND
ORTHOGONAL POLYNOMIALS

(GANG JOON YoON

ABSTRACT. We give a new interpretation of Darboux transforms
in the context of orthogonal polynomials and find conditions in or-
der for any Darboux transform to yield a new set of orthogonal
polynomials. We also discuss connections between Darboux trans-
forms and factorization of linear differential operators which have
orthogonal polynomial eigenfunctions.

1. Introduction

Let P be the space of all polynomials in one variable with complex
coeflicients and denote the ‘degree of a polynomial 7(z) by deg(r) with
the convention that deg(0) = —1. By a polynomial system(PS), we
mean a sequence of polynomials {@,(z)}32, with deg(¢,) =n, n > 0.

We call any linear functional ¢ on P a moment functional and denote
its action on a polynomial w(z) by (o, 7). For a moment functional o,
we call

op = (0,2"), n=0,1,---

the n-th moment of 6. We say that a moment functional ¢ is quasi-
definite if its moments {0, }52, satisfy the Hamburger condition

Any PS {¢, ()}, determines a moment functional o (uniquely up to
a non-zero constant multiple), called a canonical moment functional of
{¢n(2)}5%,, by the conditions

(0,00) 20 and (o,¢,) =0, n>1.

Received January 8, 2002.

2000 Mathematics Subject Classification: 33C45, 34A99.

Key words and phrases: Darboux transform, orthogonal polynomials, differential
equations.

This work was supported in part by BK21 project.




360 Gang Joon Yoon

A PS {P,(z)}52, is called an orthogonal polynomial system (OPS) if
there is a moment functional ¢ such that

<0', PmPn> = Kn(smna m, n > 0’

where K, are non-zero constants and d,,, is the Kronecker delta func-
tion. In this case, we say that {P,(z)}5%, is an OPS relative to o and
o must be a canonical moment functional of {P,(z)}5,.

For a moment functional o, a polynomial 7(z), and a complex number

A, we let o/, 7o, and (z — A)"*o be the moment functionals defined by

<UI’¢) = —{o, ¢’)a (mo, ¢) = (o, 79),

(&~ 20, 6(a)) = (o, L2,

for every polynomial ¢(z).
The following results are immediate consequences of these definitions.

and

LEMMA 1.1. ([10] and [11]) Let ¢ and 7 be moment functionals and
A a complex number. Then

(i) (z — Ao = 7 if and only if
(1.1) o= (z -\t +008(x — \).

(if) If o is quasi-definite and { P, (z)}5 is an OPS relative to o, then
(r,P,) =0, n > k+1 for some integer k > 0 if and only if
T = ¢(z)o for some polynomial ¢(z) of degree < k.

Due to Favard’s theorem [2], a monic PS {P,(z)}52, is a monic OPS
(MOPS in short) if and only if {P, ()}, satisfies a three-term recur-
rence relation:

(1.2) Pyt1(z) = (z — b)) Pa(z) — cpPr-1(z), n >0, (P-1(x)=0),
where {b,}° ;) and {c,}52, are complex numbers with ¢, # 0, n > 1.
We then let {P,gl) (z)}52, be the monic numerator OPS satisfying

Pih(@) = (@ = buyn) PPO(@) — e Py (a), n 20,

(PR @) =0, (@) =1)
and {P,(c;z)}32, the monic co-recursive OPS with parameter c € C
([3]) satisfying

P.(¢;z) = Py(x) — cP,Sbl_)1 (z), n=>0.

In a series of papers ([4, 5, 6, 7]), Griinbaum and et al introduced
Darboux transform to analyze and extend classical results by Bochner



Darboux transforms and orthogonal polynomials 361

[1], Krall [8], and Littlejohn [14] on the bispectral problem of classifying
all Bochner-Krall orthogonal polynomials, that is, PS’s which satisfy the
second order difference equation (1.2) and are eigenfunctions of some
linear differential operator.

Darboux transform consists of factoring the second order difference
operator (i.e., the Jacobi matrix) induced by the three-term recurrence
relation (1.2) into a product of two first order difference operators. One
then changes the order of these two factors, by which one can obtain a
new second order difference operator which depends on one or two free
parameters.

In particular, Griinbaum and Heine [4] showed how one can obtain the
so-called “Krall polynomials” by one or two Darboux transforms applied
to classical orthogonal polynomials. In [4], Griinbaum and Heine showed
this fact by working out each one of the Krall polynomials case by case.

In fact, the newly obtained second order difference operator by Dar-
boux transform may or may not yield a new set of orthogonal poly-
nomials, depending on the choice of free parameters involved. In this
work, we first find conditions under which a Darboux transform yields a
new OPS. We also interpret Darboux transform via moment functionals,
which shows very clearly the role of Darboux transform in the context
of orthogonal polynomials.

This new interpretation of Darboux transform via moment function-
als can explain the result [4] in a unified way as well as others.

Lastly, we also discuss some connections between Darboux transforms
and factorization of linear differential operators which have orthogonal
polynomial eigenfunctions.

2. Darboux transform

From now on, we always let {P,(z)}5%, be an MOPS relative to a
quasi-definite moment functional o, which satisfies the three-term recur-
rence relation

(2.1) Poy1(z) = (z — b)) Po(z) — cnPra(z), n2>0,
(P_1(ac) = 0, Po(.’lt) = 1)

where ¢, % 0, n > 1. We can express (2.2) as

(2.2) JP =zP,
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where P := (Py(z), Pi(z), Px(z),--- )¢ and the tridiagonal semi-infinite
matrix

bp 1 0 O
clb110

002b21

is the Jacobi matrix of the MOPS {P,(z)}32, Now for any A € C,
decompose J into

(2.3) J=AB+ X or J=BA+ )
whenever it is possible, where
a 1 0 0 ... 1 0 00
0 o 1 0 ... Bi 1 00
Bz 1 0

(24) A=|10 0 a 1 ..| and B=|

are lower and upper triangular matrices.
In either case, we call

J=BA+X (orJ=AB+ )

a Darboux transform of J with parameter \.
In the followings, for simplicity of notation, we use [an, fn,¥n] to
denote the tridiagonal semi-infinite matrix

o v O O
o1 om0
[an, Brsml =10 ay Bo 7

It is then easy to see that J = [én, ba, 1] is also a tridiagonal semi-infinite
matrix, which naturally induces another monic PS {P,(z)}52, defined
recursively by the three-term recurrence relation

(2.5) Pri1(z) = (z — bp) Pa(@) — 80 Pa-1(z), n 20,

(P_l(:):) = 0, P()(IE) = 1).
We call {P,(2)}32, a Darboux transform of {P,(z)};%, with parameter
A. By Farvard theorem ([2]), { Pn(2)}52, is an MOPS if and only if &, # 0
forn > 1.

We now have a natural question : When can we decompose the Jacobi
matrix as in (2.3) so that {P,(z)}32, is also an MOPS?
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Case 1 : Decomposition J = AB + Al.

Assume that J can be decomposed into
(2.6) J=AB+ Al
Then (2.6) means [cp, by, 1] = [@nfn, @n + Bns1 + A, 1], that is
(2.7) Brn=bp1—an1—A, n>1 and ay=1¢,/Bn, n>1
The relation (2.7) implies that we have two free parameters ag and A
from which all {an}32, and {f,}72; are uniquely determined as long
as B, #0, n>1 (so that o, # 0, n > 1). In this case J = BA+ A =
[én, bn, 1], where
(28) En=an-18n, n>1and by=0an+ B+ A\ n>0 (5 =0).
Hence, {15,1(3:)}3":0 is an MOPS if and only if é, = ap—18, #0, n > 1.

LEMMA 2.1. If J = AB + M, then

(2.9) Py(z) = Pu(z) + BpPa-1(z), n>0
and
(2.10) (x ~ N Po(x) = Pop1(z) + anPp(z), n>0.

Proof. Define a monic PS {Qn(z)}52, by
Q = BP, thatis, Qu(z)= P,(z)+ BpPr-1(z), n>0.
Then we have by (2.6)
(x—A)P = (J—A)P=ABP = AQ,
that is,
(.’E - /\)Pn(m) = Qny1+ anQn(x)y n > 0.
We also have
BAQ = (z — A\)BP = (z — \)Q,
which means that {Qn(z)}52, also satisfy the three-term recurrence
relation (2.6) with the initial conditions @_1(z) = 0 and Qo(z) = 1.
Hence Q,(z) = P,(z), n > 0, which completes the proof. O

LEMMA 2.2. Let {P,(z)}32, be an MOPS relative to o satisfying
(2.2). Then ¢ = (z — Ao (A € C) is also quasi-definite if and only if
P\ £0, n> 1. .

When G is also quasi-definite, its corresponding MOPS {P,(z)}%,
satisfy

211) @ -NPu(@) = Paa(e) — & ;;:gﬁj) Paz), n>0,
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- P,1(\) 4
(2.12) P.(z) = Py(z) — —-—McnP ~1{z), n>0.
Pa(X)
Proof. Assume & = (z — A)o is quasi-definite but P,(A) = 0 for
some n > 1. Then Pp(x) = (z — A\)mp—1(z), where 7,_1(z) is a monic
polynomial of degree n — 1. Hence

(0, P3(2)) = (0, Pa(2) Pa(@)) = (&, Tn-1(z) Pa(2)) =0,

which is impossible. Hence, P,(A) # 0, n > 1.
_Conversely assume FPn(A) # 0, n 2 1 and define a monic PS
{P.(x)}2, by (2.11). Then

- Pos(A
(G,(z — NP, (2)) = - i )(a, (z— NPy (z)), 0<k<n
P.())
so that {P,()}52, is an MOPS relative to & = (z — A)o. Finally (2.12)
comes from (2.11) by Christoffel-Darboux identity. O

The MOPS {P,(z)}, in Lemma 2.2 is called the monic kernel poly-
nomials of {P,(z)}52, with K-parameter A([2]).

PROPOSITION 2.3. Let {P,(z)}32, be the MOPS relative to o satis-
fying (2.2). Define a new monic PS {P,(z)}%q by (2.9), where {fn}72,
are arbitrary constants with 3; # 0. Then the followings are all equiva-
lent.

(i) {Pn(2)}, is also an MOPS;

(ii) Bn #0 forn > 1, by — Bpy1 — % := A (constant) for n > 1, and
c:=A+ 01— by #0;
(iii) there are constants A and ¢ # 0 such that

Pu(c;N) = Po(\) —cPMY (N #£0, n>0

and
Po(c;A)
=—-5——— "2l
P Pn—l(c; /\)
(iv) there is a constant A such that (x — A\)6 = o and
(0, Fn)
n= "7 1 > 1)
’8 (va —1)

where & is a canonical moment functional of {P,(z)},.
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Moreover, in this case, we have 15n()\) #0, n>1 and

(2.13) (x — A)Pp(z) = Py (z) — P;;z/(\/)\) Py(x), n>0.

Proof. For the equivalence of (i), (i), and (iii), see Theorem 2 in [15]
(see also Theorem 4.2 in [10]). Assume now that {P,(z)}%2, is an MOPS
relative to 6. Then

(G, Po(2)) = (5, Po()) + Bn(F, Poo1(z)) =0, n>1

so that (¢, P,(z)) # 0, n > 0 and 3, = —%, n > 1. On the
other hand,

(0, Pa(2)) = (0, Pu(@)) + Bn{0, Po1(z)) =0, n>2

so that o = (az + b)G by Lemma 1.1 (ii). From (o, P (z)) = (&, (az +
b)P,(z)) for n =0, 1, we obtain

1 _
:—~—IB‘1~00—=——'?_’—9 and b=(1+b0 /Bl)g
(6,2P(x)) c oy c 0y
Hence, if we normalize & so that 6y := (§,1) = —ap/c, then a = 1,b =

—A so that (x — A\)& = o. Therefore, (i) implies (iv). Conversely, assume
that (iv) holds. Then we can see easily that

(@, (@ = N Fa(2))

and n>1

k=0
1<k<n.

IA I

0, if
= &,Pp(z .
— B (0, P2 (@), if
Hence, {P, ()}, is an MOPS relative to &. Therefore, (iv) implies
().

Finally, assume that & is quasi-definite. Then Pn(A) #0, n>1and

(2.13) holds by Lemma 2.2 (where the roles of o and & are exchanged).
O

THEOREM 2.4. The Jacobi matrix J = [cn, bp, 1] of the MOPS
{Pn(z)}5%, can be decomposed into J = AB+ Al as in (2.3) so that the
corresponding Darboux transform {P,(z)}3, is also an MOPS if and
only if the two free parameters o and A are chosen so that

(2.14) a9 #0 and Pp(—ap;A) = Po(N) + aOPY(ll_)l()\) #0, n>0.
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Moreover, in this case, {P,(z)}2, is orthogonal relative to & satisfying
(zx —A)g =0 and

(2.15) )
Pr(—ag;A) Pori(V)
=———""" n>1 and o,=-—% ,
B Py_1(—ag; A) " P,()\)
_ Proof. Assume that we can decompose J as J = AB + Al so that
J = BA + Al induces an MOPS {F,(z)}2>,. Then we have (2.9) and
(2.10). Hence by (2.13)

Pn-f—l()‘)

= >
B 0Y

In particular, ag = —P;(A) = —(A — by + ;) = —c so that (2.14) and

(2.15) come from Proposition 2.3. Conversely, assume that (2.14) holds.

Let

ﬂn=—}%§—z_02—;ox), n>1 and anz,%::’ n>1.
Then by Proposition 2.3, b, — fp41—an = A, n > 150 that (2.7) holds.
Hence J = AB + Al and {P,(z)}52, is also an MOPS. O
Case 2 : Decomposition J = BA + Al
Assume that J can be decomposed into
(2.16) J=BA+ I
which means
(2.17)
On=by—By—A 120 (B=0) and ﬂn=a‘:il, n>1.

The relation (2.17) implies that we have only one free parameter A from
which all {0, }22, and {8,}52; are determined uniquely as long as a, #
0 for n > 0 (so that B, # 0 for n > 1). In this case the Darboux

transform is J = AB+ A\ = [En, bn, 1], where
(2.18) Cn=nfn, m>1 and by = ay + Bny1+ A, n>0.

Unlike as in Case 1, the Darboux transform {5, ()}, in Case 2 is an
MOPS as long as the decomposition J = BA + Al is possible.

LEMMA 2.5. If J = BA + I, then
(2.19) Po(z) = Pu(z) + BpPa-1(z), n>0
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and
(2.20) (x — N)Po(x) = Popi(z) + 0nPo(z), n>0.
Proof. Set Qnt1(x) = Pot1(z) + anPp(z), n > 0. Then

(= NP =(J — A\)P = BAP = B(Q1(z), Q2(z), Q2(x), - )’

or equivalently,

(CL‘ - )‘)Pn(x) = Qn-i—l(:x) + /BnQn(x)a n>0 (,30 = 0)-
Hence @,(\) =0, n > 1 since B, # 0, n > 1 so that

Qn(il?) = (3’" - A)Qn—l(“’% n2>1,

where {Qy ()}, is a monic PS. Then (z — \)Q = AP = ABQ, that
is,
Qn+1(2) = (=b)Qn(2) =& Qn-1(z), n 20 (Q-1(z) =0, Qo(x) = 1).
Hence Qn(z) = Py(z), n > 0 so that P = BP and (z — A\)P = AP,
which are just (2.19) an d (2.20). O
Let {P,(2)}32, and {P(z)}52, be two MOPS’s relative to o and
& respectively. If & = (r — A)o, then there are non-zero constants
on, n >0 and B,, n > 1 such that (2.19) and (2.20) hold (see Lemma
2.9).
Conversely we have:

PROPOSITION 2.6. Let {P,(x)}3%, and {P,(z)}%2, be two monic
PS’s.

(1) If there are constants A and o, # 0, n > 0 such that (2.20) holds,

then (x — A)o is a canonical moment functional of {Py,(z)}%,,

where o is a canonical moment functional of {P,(z)}5%.

(i) If there are constants A and oy, # 0 (n 2 0),8, # 0 (n > 1) such
that (2.19) and (2.20) hold, then both {P,(z)}32, and {P,(z)}32,
are monic OPS’s relative to o and & = (x — A)o respectively and

P,(A\)#0, n>1.
Proof. (i) By (2.20), we have
<(33' - )‘)Ua Pn(x» = <O’, Pn+1(33) + anPn(x» = apoglon, n >0

so that (z — A)o is a canonical moment functional of {P,(z)}3%,.
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(i) By (2.19) and (2.20), we have
TPy () = Pag1(z) + (an + Bn + A\ Po(x)
+ an-10nPr-1(z), n>0 (Go=0)
zB(x) = Prya(z) + (an + Bns1+ A)Pa(z)
+ anfpnPp-1(z), n>0

so that {P,(2)}3., and {P, ()}, are MOPS’s relative to ¢ and & =
(z—A)o (by (i)) respectively by Farvard’ theorem ([2]). Finally, P,(}) 76
0, n > 1 by Lemma 2.2.

THEOREM 2.7. The Jacobi matrix J = [c,, by, 1] of the MOPS
{Pn(z)}o2, can be decomposed into J = BA + M if and only if the
free parameter A satisfies

P.(A)#0, n>1.

Moreover, in this case, the corresponding Darboux transform {ﬁn(x)};’f__o
is an MOPS relative to 6 = (z — A\)o and
(2.21) ap = —P]"J:E/(\’)\), n>0 and B, =—

Proof. Assume that J can be decomposed into J = BA + AI. Then
Cn = 0n—1fPn, n > 1 by (2.17) so that a, #0, n > 0and B, #0, n >
1. Hence by Lemma 2.5 and Proposition 2.6, {P,(2)}32, is an MOPS
relative to & = (z — A)o and P,(\) #0, n > 1.

Conversely assume FP,(\) # 0, n > 1, Then by Lemma 2.2, 6 =
(x — A)o is quasi-definite and (2.11) and (2.12) hold for the MOPS
{Pn(z)}32, relative to 4.

We can express (2.11) and (2.12) as

(t—A\)P=AP and P=BP,

where A = [0, ay, 1} and B = [8,, 1, 0] with a,, and B, as in (2.21). Then
(/] —A)P =BAP so that J = BA+ )\l O

In summary, we have two Darboux transforms:

e J=AB+ XM — J= BA+ M, which transforms o into &
with (z —A)& = o, that is, & = (z — A) "o +60d(z — A) (cf. (1.1));

e J=BA+M — J= AB+ A, which transforms o into &
with & = (z — A)o.
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In the literature [16], the transform from o into 6 = (z — A\)"lo +
G0d(z — ) is called the Geronimus transform and the transform from o
into & = (x — A)o is called the Christoffel transform.

Recall that in decomposition J = AB + M\, we have two free param-
eter ap and A but in decomposition J = BA + A, we have only one free
parameter A. Hence, if we perform these two Darboux transforms with
fixed A in succession, then we have

e J=AB+XM — J=BA+M — J=AB+ M\, which
transforms o into o itself (that is, Christoffel transform is the left
inverse of Geronimus transform).

e J=BA+A — J=AB+M=AB+X — J=
B’ A’ + M, which transforms ¢ into & with (z — A\)& = (z — A)o so
that 6 = o + (69 — 00)8(z — A).

As a point mass perturbation of o, & = o + (5o — 00)d(z — A) is called

a Uvarov transform of o ([16]).

This observation explains why the “Krall polynomials” (see [4] for
definition) can be obtained from classical orthogonal polynomials via a
succession of suitable Darboux transforms (see Theorem 2 in [4]) since
Krall polynomials are orthogonal relative to a classical moment func-
tional plus one or two point masses.

3. Further results

Let o be a quasi-definite moment functional. Then by a Darboux
transform with a parameter A, o is transformed into & satisfying either
(z — X)& = o in case of Geronimus transform or & = (z — \)o in case
of Christoffel transform. Then by a succession of Darboux transforms
with varying parameters, ¢ is transformed into 7 satisfying

(3.1) r(z)o = s(z)T
where 7(z) and s(z) are polynomials.

LEMMA 3.1. (cf. [9]) Let o and T be quasi-definite moment function-
als with the corresponding OPS’s {P,(z)}32, and {Q,(x)}32,, respec-
tively. Then the followings are equivalent:

(i) r(z)o = s(z)T for some polynomials r(z) of degree r > 0 and s(x)

of degree s > 0;
(ii) there are an integer s > 0 and constants a?(n~s < ¢ < n+r) and
a polynomial r(x) of degree r > 0 such that aj_, # 0 and
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n-+r

(3.2) r@Qn(z) = Y. afP@), n2s

1=n—s

(ili) there are an integer r > 0 and constants bl'(n—r <1 < n+s) and
a polynomial s(z) of degree s > 0 such that b;._,. # 0 and

n+s
(3.3) s(z)Py(z) = Z b'Qi(z), n>r.
i=n—r
Proof. Assume that (i) holds. Expand r(z)Qn(z) as
n+r

7(2)Qn(z) =) af Fi(z)
i=0

Then
ai (o, PE(z))
= {o0,7(2)Qn(z)Pr(z))
— <7—) S(ZE)Qn(fD)Pk(.’L')) = 07 k+s< n,
non-zero, k+s=n.

Thus we have the relation (3.2).
Conversely assume that (3.2) holds. Then

7’(93)0 Qn(z))
= {(o,7(z)Qn(x))
— ?::sz o, Pi(z)) = 0, n>s,
- non-zero, n=as:.

Then Lemma 1.1 (iv) implies that there is a polynomial s(z) of degree
s such that r(z)o = s(z)7, which completes the equivalence of (i) and
(ii). In the same fashion, we can show the equivalence of (i) and (iii),
which proves the lemma. a

REMARK. Let F(0)(z) := 372, -%%r be the (formal) Stieltjes func-
tion of o. Then we can express (3.1) as

F(r)(z) = r(:z:)F(o)((:-)) +b(z) for some polynomial b(z)

so that F(7)(z) is a linear spectral transform of F(o)(z) ([16]).

Note that equations (3.2) and (3.3) hold trivially for 0 <n <s—1
and 0 < n <r—1 with P,(z) =0 for k < 0. Hence we can express (3.2)
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and (3.3) as
(3.4) r(z)@Q = AP and s(z)P = BQ

where A = (a}) and B = (b}) are finite-band semi-infinite matrices and
P= (PO(:L'), Plv(x)’ e )ta Q = (QO(:I;)’ Ql(x)v e )t' Hence: we have:

PROPOSITION 3.2. Let o and 7 be quasi-definite moment functionals
satisfying (3.1). Let {Pn(x)}2, and {Qn(z)}3%, be OPS’s relative to
o and T, respectively. Then there are finite-band semi-infinite matrices
A and B satisfying

(3.5) r(x)s(x)P = BAP so that BA=r(Jp)s(Jp),

(3.6) r(z)s(x)Q = ABQ so that AB =r(Jg)s(Jg),

where Jp and Jg are the Jacobi matrices of { P, (2)}52, and {Qn(2)}52,,
respectively.

Proof. Let A and B be the same as in (3.4). Then
r(z)s(z)P = r(z)BQ = Br(z)Q = BAP.
Since zP = JpP, r(z)s(z)P = r(Jp)s(Jp)P = BAP. Thus we have

r(Jp)s(Jp) = BA, which proves (3.5). (3.6) is obtained in the similar
fashion. O

THEOREM 3.3. (cf. Theorem 3.1 and 3.2 in [13]) Let {P,(z)}>2, be
an OPS relative to o, 7 > 0 an integer, and Lo['| = S, ai(z)D* (D =
d/dz) a k-th order linear differential operator with polynomial coeffi-
cients a;(z) of degree < i. If {Qn(z)}2, defined by

Qn(z) = P(T)r] z) = Zaz Pr(zz-:;r) (z), n=0

is also an OPS, then there are two finite-band semi-infinite matrices A
and B and a linear differential operator Lq[-] with polynomial coefficients
of order k +r :

k+r ‘

L[] = Zbi(:zz)D’ (deg(b;) <i+7)

=0
such that
(37) { L2 o L1 [Pn](il,‘) = )\nPn(:ZI), n 2 0

Lyo L2[Qn] (-75) = )\n+rQn(m)a n=>0 (>\n+r # 0)
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for some constants A\g = A\y = --- = A\._1 = 0 and A\, # 0, n > r, where
Ll[] = LO o D"and

(3.8) ar(z)bgyr(z)P = BAP, ag(z)bi4r(z)Q = ABQ

(so that {Qn(z)}S, is obtained from {P,(z)}S2, by a succession of

Darboux transforms).

n=0

Proof. Assume that {Qn(z)}52, is an OPS relative to 7. We then
claim that there are polynomials {b](alc)};c with deg(b;) < j +r and

k+r

(3.9) > (-1) (;) (ai—r(z)7) ) = bi(x)o, 0<j<k+r

i=j
where a;(z) = 0 for ¢ < 0. First,

k+r

(1,Qn(z)) = <Z(—1)i(ai—r(x)7')(i)7Pn+r(a7)> =0, n=>1

i=0

so that by Lemma 1.1 (ii), there is a polynomial by(x) of degree < r,
with which (3.9) holds for j = 0. Assume now that there are polynomials
{b;(x)}5_y (0 < € < k+ ) with deg(b;) < j + r and (3.9) holds for
0<j<{¢ Thenforn>~¢+2

0= <T7 Qe-l‘lQ'n.)

ktr
= <Z+:(_1)i(Q€+lai—rT)(i)a Potr)
ke
ZQ€+1 Z( 1) <> az_r'r)( J)a Prir)
ktr
éit”iz;,l (1 1) @D, P

Ga (Z Q2+1b )Pn+1'>

k+r

Qgﬂj—ll ( Z (- 1)z (£+ 1) (ai—ﬂ')(i_e_l)’ Prir)

i=4+1
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so that

k+r .
< Z (—1)1;( ’ )(ai—rT)(i_e_l)aPn+r> =0, n>4+2.

i=f+1 t+1

Hence, again by Lemma 1.1 (iv), there is a polynomial by1(x) of degree
< £+r+ 1 with which (3.9) holds for j = £+ 1, which proves the claim.
From (3.9) for j = k + r, we have

(—1)**7ap(2)T = bpyr(z)0

so that b, ,(z) Z 0 and (3.8) follows from Proposition 3.2. On the other
hand,

(r,Q2%) = ng(j)% ()a YD) Py
1T 9 n+r

k+r
= (o, O_QYbj)Puys) #0, n>0
7=0
so that
k+r
(3.10) Z bjj4rn() #0, n>0

where b;(z) = kab ozt and

e — 1, j=0
@D~ nn-1--(n—35+1), j>1
We now let
~ . P,(x), 0<n<r—1
Fal@) = { La[@Qn—)(z), n2=T

Then deg(P,) = n, n > 0 by (3.10) and we can show easily that

{P,(z)}22, is an OPS relative to o by using

k+r

S (-1 (J) (ba(2)o) ) = aj_ (@), 0<j<k+r,

i=j
which is a direct consequence of (3.9). Hence,

By (z) = La[Qn_r](z) = MPpn(z), n>7
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for some constants A, # 0. Finally,
L2 [¢] Ll[Pn](JI) = L2 e} LO[P,E’")](:L‘)

0, if 0<n<r-1
Ly[@Qn—r](z) = ApPr(z), if n>r

and
Lo LZ[Qn](x) = /\n+rL1[Pn+r](m) = }\n—i-'rQn(x), n >0,
which proves (3.7). O

We now let {P,(z)}S, be an MOPS, which are eigenfunctions of a

n=0
linear differential operator with polynomial coefficients:

N
(3.11) LIPu(z)] = Y :(2)PP(z) = MPu(z), 720

i=0
where 4;(z), 0 < i < N, are polynomials of degree < 4. Such an OPS is
called a Bochner-Krall OPS ([11, 12]). We may express (3.11) as

L[P] = AP,
where L[] = YN £:(z)D* and A = dial(Ag, A1, -+ ). Let
B = (J,A)

be the algebra of semi-infinite band matrices generated by the Jacobi
matrix J = [¢g, bp, 1] of {Pr(2)}32, and A, and

B = (z,L)
the algebra of differential operators with polynomial coefficients gener-

ated by z and L[]
Define an anti-isomorphism b from B into B’ by

b(J)==z, b(A)=L, and b(J'AY)= LIz’
for non-negative integers ¢ and j.

THEOREM 3.4. (cf. Theorem 1 in {7]) Let {P,(z)}52, be a monic
Bochner-Krall OPS satisfying (3.11) and J the Jacobi matrix of
{Pn(x)}32,, and let {Qn(x)}52, be an OPS relative to 7. Then there is
a nonzero polynomial s(z) such that

(i) s(J) = BC, where B and C are finite-band semi-infinite matrices

and C € B,

(it) CP = Q (so that BCP = s(z)P, and CBQ = s(z)Q)
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if and only if there is a linear differential operator L1[-] € B’ such that
L1[Pn(z)] = Qu(z), n>0.

In this case, there is a linear differential operator Ly[-] of the same order
as L;[-] such that
Ly 0 L1[Pr(z)] = pnPn(z)

and

Lio Lo[@Qn(z)] = pn@n(z), n20 (4n#0, n=0).

(Hence {Qn(x)}5, is also a Bochner-Krall OPS, which is obtained from
{Pn(2)}2y by a succession of Darboux transforms).

Proof. (=) Let b(C) := L[] € B'. Then L1[P] = b(C)P = CP =
Q, that is, L1[P.(z)] = Qn(z), n > 0, which implies that Li[] =
Zfzo a;(z) D" is a linear differential operator with polynomial coefficients
a;(z) of degree < i. Then by Theorem 3.3, there is a linear differential
operator L[] = S b;(x) D' of the same order as L[] with polynomial
coefficients b;(z) of degree < 4 such that

Lyo Ll[Pn(m)] = ;Ufnpn(-r) and Ljo LZ[Qn("L')] = /anQn(x)» n>0

for some constants p, # 0, n > 0.

(<) Since L1[-] € B/, there is a matrix C € B such that b(C) = L[]
Then we have,
(3.12) Q = L,[P| = CP.

By Theorem 3.3, there are two polynomials r(z) and s(x) such that
r(z)o = s(z)r. From Proposition 3.2, there are two finite band semi-
infinite matrices A and B such that

r(z)Q = AP and s(z)P = BQ.
Hence we have by (3.12)
s(J)P = s(z)P = BQ = BCP
so that s(J) = BC and C € B. O
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