Expressions of Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-2 with Changes of Interleukin-6 and Interleukin-18 in Atherosclerotic Lesions of Hypercholesterolemic Rabbits

고콜레스테롤혈증 가토의 죽상경화성 병변에서 Interleukin-6와 Interleukin-18의 변화 및 Matrix Metalloproteinase-9과 Tissue Inhibitor of Metalloproteinase-2의 발현

  • 권영무 (동국대학교 의과대학 흉부외과학교실) ;
  • 김성숙 (울산대학교 의과대학 병리학교실) ;
  • 장봉현 (경북대학교 의과대학 흉부외과학교실)
  • Published : 2002.06.01

Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by progressive accumulation of lipids, cells, and extracellular matrix. Matrix metalloproteinases(MMPs) and tissue inhibitor of metalloproteinases(TIMPS) contribute to vascular matrix remodeling in atherosclerosis, and some cytokines may play role in the synthesis or activation of MMPs or TIMPs. Material and Method: We produced experimental atherosclerotic plaques in 9 rabbits by atherogenic hypercholesterol diet for 12 weeks, and 10 other rabbits were used as control group with standard laboratory chow, At that time, 19 rabbits were sacrificed and aorta, coronary arteries and blood specimens were prepared. The expressions of MMP-9, TIMP-2 and interleukin(IL)-18, and the bioactivity of IL-6 were investigated with H&E stain, immunohistochemical stain, immunoblotting(Western blot analysis), and bioassay. Result: Serum cholesterol in the experimental group increased up to 1258$\pm$262 mg/dL(control group: 41$\pm$7 mg/dL). All experimental group showed well-developed atherosclerotic plaques in aorta and coronary artery. The expression of MMP-9 in aorta and coronary artery of the experimental group showed significant increase than that of the control group by immunohistochemistry. Among the experimental group, complicated lesions with intimal rupture or complete luminal occlusion, demonstrated stronger expression of MMP-9. Interestingly, there was no difference in expression of TIMP-2 between the experimental and the control group. These findings were confirmed by Western blot analysis. The bioassay revealed significant up-regulation of serum bioactivity of IL-6 in the experimental group(4819.60$\pm$2021.25 IU/$m\ell$) compared to that of IL-6 in the control group(27.20 $\pm$ 12.19 IU/$m\ell$). IL-18 was expressed in all atherosclerotic plaques, whereas little or no expression was detected in the control group. Conclusion: The increased MMP-9 expression along with the unchanged TIMP-2 expression seem to be contributory factors in extracellular matrix degradation in atherosclerosis. Focal overexpression of MMP-9 may promote plaque destabilization and cause complications of atherosclerotic plaques such as thrombosis with/without acute coronary syndrome. Elevation of IL-6 and IL-18 may be more than just markers of atherosclerosis but actual participants in lesion development. Identification of critical regulatory pathway is important to improve the understanding of the cellular and molecular basis of atherosclerosis and may open the way for novel therapeutic strategies.

죽상경화증은 지방, 대식세포나 평활근세포와 같은 세포, 그리고 extracellular matrix(ECM)의 점진적인 축적이 특징적인 만성 염증성 혈관 질환이다. Matrix metalloprotenases(MMPs)와 tissue inhibitor of metalloproteinases(TIMs)는 죽상경화증에서 혈관의 ECM의 분해와 재모델링에 관여하며, cytokines는 MMPs와 TIMPs의 합성이나 활성화에 관여하는 것으로 보고된 바 있다. 대상 및 방법: 연구 대상으로는 체중 2.0~2.5 kg의 생후 1개월 된 뉴질랜드산 수토끼를 선택하였으며, 10 마리는 12주 동안 1% 콜레스테롤 식이를 투여한 후 실험군으로 이용하였으며, 나머지 10마리는 표준 실험실 식이를 먹여 대조군으로 이용하였다. 12주간 사육 후 토끼를 희생시켰으며, 생존한 실험군 9 마리와 대조군 10 마리의 대동맥과 관상동맥에서 H&E 염색, 면역조직화학 염색, immunoblotting, bioassay의 방법으로 MMP-9, TIMP-2, IL-18의 발현 및 IL-6의 생물학적 활성도를 조사하였다. 결과: 실험군의 혈청 콜레스테롤은 1258$\pm$262mg/dL로 대조군의 41$\pm$7mg/dL에 비하여 유의하게 증가하였다. 실험군의 전예에서 대동맥과 관상동맥에 죽상경화반이 잘 형성되었으며, 실험군의 대 동맥 내막의 두께는 0.31$\pm$0.1mm로 대조군의 0.01mm에 비해 유의하게 증가하였다. 죽상경화반에서 실험군의 MMP-9의 발현은 대조군에 비하여 유의하게 증가하였으며, 내막의 파열이나 관상동맥의 내강 폐쇄가 있었던 증례에서는 더욱 강한 MMP-9의 발현을 관찰할 수 있었다. TIMP-2는 실험군의 일부에서 약한 발현을 보였으나 대조군과 유의한 차이가 없었다. 실험군과 대조군에서 측정한 IL-6의 생물학적 활성도는 각각 4819.60$\pm$2021.25, 27.20$\pm$12.19IU/mL로서 실험군에서 유의한 증가를 보였으며, 면역조직화학 염색에 의한 IL-18의 발현은 대조군에서는 발현되지 않았으나, 실험군은 전예에서 발현을 보였다. 결론: MMP-9의 증가된 발현과 TIMP-2의 무변화로 인한 MMPs/TIMPs의 불균형은 죽상경화성 병변에서 ECM의 분해와 경화반의 불안정화를 촉진시킬 수 있는 것으로 보인다. 또한 내막의 파열이 관찰된 증례에서의 더욱 증가된 MMP-9은 경화반의 파열과 관련있는 것으로 생각된다. IL-6의 생물학적 활성도의 증가 및 IL-18의 발현은, IL-6와 IL-18이 죽상경화증의 표지자일 뿐만 아니라 MMP-9의 분비 또는 활성화에 관여하여 죽상경화증의 진행과 경화반의 불안정성 등에 활발히 참여하는 cytokines임을 시사하는 소견으로 보인다. MMPs, TIMPs, cytokines등의 조절 과정을 밝혀내는 것은 죽상경화증의 세포, 분자적인 병리기전을 이해하는 데에 도움을 줄 것이며, 죽상 경화증의 치료 또는 합병증을 예방할 수 있는 기전을 확립하는 데에 도움이 될 것으로 생각된다.

Keywords

References

  1. Invasion Metastasis v.9 Matrix metalloproteninases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion Khokha R.;Denhardt DT
  2. Circulation v.91 Identification of 92-kDa gelatinase in human coronary atherosclerotic lesions; assoication of active enzyme synthesis with unstable angina Brown DL;Hibbs MS;Kearney M;Loushin C;Isner JM https://doi.org/10.1161/01.CIR.91.8.2125
  3. Circ Res v.77 Matrix metalloproteinsae and cardiovascular disease Dollery CM;McEwan JR;Henney AM https://doi.org/10.1161/01.RES.77.5.863
  4. Circulation v.92 Coronary plaque disruption Falk E;Shah PK;Fuster V https://doi.org/10.1161/01.CIR.92.3.657
  5. Circ Res v.82 Time dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function Spinale FG;Coker Ml;Thomas CV;Walker JD;Mukherjee R;Hebbar L https://doi.org/10.1161/01.RES.82.4.482
  6. Circulation v.97 Lipid lowering by diet reduces matrix metalloproteinases activity and increase collagen content of rabbit atheroma. a potenial mechanism of lesion stabilization Aikawa M;Rabkin E;Okada Y(et al.) https://doi.org/10.1161/01.CIR.97.24.2433
  7. Circulation v.98 Differential expression of tissue inhibitors of metalloproteinases in the failing human heart Li YY;Feldman AM;Sun Y;McTieman CF https://doi.org/10.1161/01.CIR.98.17.1728
  8. Am J Pathol v.153 Expression and Localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development Matsumoto S;Kobayashi T;Katoh M(et al.) https://doi.org/10.1016/S0002-9440(10)65551-4
  9. Curr Opin Cell Biol v.1 Proteinases and extracellular matrix remodelling Alexander CM;Werb Z https://doi.org/10.1016/0955-0674(89)90068-9
  10. J Biol Chem v.261 Secretion of metalloproteinases by stimulated capillary endothelial cells. 1. Ptoduction of procollagenases and prostromelysin exceeds expression of proteolytic activity Herron GS;Werb Z;Dwyer K;Banda Mj
  11. J Biol Chem v.271 Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4 Greene J;Wang M;Liu YE;Raymond LA;Rosen C;Shi YE https://doi.org/10.1074/jbc.271.48.30375
  12. Circ Res v.83 Expression of tissue inhibitor of metalloproteinase-3 in human atheroma and regulation in lesion-associated cells: a potential protecitve mechanism in plaque stability Fabunmi RP;Sukhove GK;Sugiyama S;Libby P https://doi.org/10.1161/01.RES.83.3.270
  13. Atherosclerosis v.148 Inflamation, obesity, stress and coronary heart disease: is interleukin-6 the link? Yudkin JS;Kumari M;Humphries SE;Mohamed-Ali V https://doi.org/10.1016/S0021-9150(99)00463-3
  14. Circulation v.104 Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque stability Mallat J;Corbaz A;Scoazec A(et al.) https://doi.org/10.1161/hc3901.096721
  15. J Clin Invest v.94 Increased expression of matrix metalloproteinase and matrix degrading activity in vulnerable regions of human atherosclerotic plaques Galis ZS;Sukhova GK;Lark M;Libby P https://doi.org/10.1172/JCI117619
  16. Arterioscler Thromb Vasc Biol v.19 Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 from the aorta of cholesterol fed rabbits partially counterbalances increased metallopreoteinase activity Zaltsman AB;George SJ;Newby AC https://doi.org/10.1161/01.ATV.19.7.1700
  17. Methods Mol Biol v.32 The Braford method for protein quantitation Kruger NJ
  18. Int J Oncol v.2 Regulation of the matrix metalloproteinases: their role in tumor invasion and metastasis Rees RC;Cottam DW
  19. J Invest Dermatol v.8 Collagenase in wound healing effect of wound age and type Agren MS;Taplin CJ;Wossner Jr. JF;Earlstein WH;Mertz PM
  20. Circulation v.98 Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds Mann DL;Spinale FG https://doi.org/10.1161/01.CIR.98.17.1699
  21. Life Science v.68 Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit Romanic AM;Burns-Kurtis CL;Gout B;Berrebi-Bertrand I;Ohlstein EH https://doi.org/10.1016/S0024-3205(00)00982-6
  22. Circulation v.102 A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure Spinale FG;Coker ML;Heung LJ(et al.) https://doi.org/10.1161/01.CIR.102.16.1944
  23. Circulation v.99 Membrane type I matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators Rajavashisth TB;Xu XP;Jovinge S(et al.) https://doi.org/10.1161/01.CIR.99.24.3103
  24. Biol Chem v.376 Cytokine regulation of matrix metalloproteinase activity and regulatory dysfunction in disease Ries C;Petrides PE
  25. Biol Chem v.378 Activational mechanisms of matrix metalloproteinases Nagase H
  26. Circ Res v.71 Cultured rat aortic vascular smooth muscle cells digest naturally produced extracellular matrix: involvement of plasminogen-dependent and plasminogen-independent pathways Sperti G;Van Leeuwen RTJ;Quax PHA;Maseri A;Kluft C https://doi.org/10.1161/01.RES.71.2.385
  27. Am J Pathol v.148 Expression of collagen, interstitial collagenase, and tissue inhibitor of metalloprotenase-1 in restenosis after carotid endarterectomy Nikkari ST;geary RL;Hatsugami T(et al.)
  28. Biochem J v.315 Divergent regulation by growth factors and cytokines of 95 kDa and 72 gelatinases and tissue inhibitors of metalloproteinases-1, -2 and -3 in rabbit aortic smooth muscle cells Fabunmi RP;Baker AH;Murray EJ;Booth RFG;Newby AC https://doi.org/10.1042/bj3150335
  29. Circ Res v.80 Plasminogen activator inhibitor type 1 and tissue inhibitor of metallopreteinases -2 increase after arterial injury in rats Hasenstab D;Forough R;Clowes AW
  30. Atherosclerosis v.87 Atherosclerotic plaque caps are locally weakened when macrophages density is increased Lendon CL;Davies MJ;Born GV;Richardson PD https://doi.org/10.1016/0021-9150(91)90235-U
  31. Circulation v.90 Macrophages infiltration in acute cornonary syndrome; implications for plaque rupture Moreno PR;Falk E;Palacios IF;Newell JB;Fuster V;Fallon V https://doi.org/10.1161/01.CIR.90.2.775
  32. Circulation v.89 Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaque is characterized by an inflammatory process irrespective of the dominant plaque morphology Van der Wal AC;Becker AE;Van der Loos CM;Das PK https://doi.org/10.1161/01.CIR.89.1.36
  33. Circulation v.92 Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix-degrading metalloproteinases and implications for plaque rupture Shah Pk;Falk E;Badimon JJ(et al.)
  34. Stroke v.31 Increased matric metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption Loftus IM;Naylor AR;Goodall S(et al.) https://doi.org/10.1161/01.STR.31.1.40
  35. Circulation v.91 Molecular Bases of the acute coronary syndromes Libby P https://doi.org/10.1161/01.CIR.91.11.2844
  36. Circulation v.101 Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications of r inflammation and plaque instabillity Schieffer B;Schieffer E;Hilfiker-Kleiner D(et al.) https://doi.org/10.1161/01.CIR.101.12.1372
  37. Arterioscler Thromb Vasc Biol v.19 Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration Shi Y;Patel S;Niculescu R;Chung W;Desrochers P;Zalewski A https://doi.org/10.1161/01.ATV.19.5.1150
  38. Circ Res v.75 Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzyme required for extracellular matrix digestion Galis ZS;Muszynski M;Sukhova GK(et al.) https://doi.org/10.1161/01.RES.75.1.181
  39. Arterioscler Thromb Vasc Biol v.19 Interleukin-6 exacerbates early atherosclerosis in mice Huber SA;Sakkinen P;Conze D;Hardin N;Tracy R https://doi.org/10.1161/01.ATV.19.10.2364
  40. Atherosclerosis v.127 Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall Rus HG;Vlaicu R;Niculescu F https://doi.org/10.1016/S0021-9150(96)05968-0
  41. Fibrinol Proteolysis v.11 no.SUP1 Atherosclerosis, thrombosis and inflammation: a question of linkage Tracy R.
  42. Circulation v.97 N-actyl-cysteine decreases the matrix-degrading cpacity of macrophage-derive foam cells. New target for antioxidant therpy? Galis ZS;Asanuma K;Godin D;Meng X https://doi.org/10.1161/01.CIR.97.24.2445