DOI QR코드

DOI QR Code

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes

불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용

  • Published : 2002.09.01

Abstract

In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Keywords

References

  1. Lee, S. H., 2000, 'MEMS Research at SAlT: Toward Robust Design of MEMS,' Proc. KSME Spring Annual Meeting A, pp. 65-66
  2. Cho, Y H., 1995, 'Development of a Micro Gyroscope for the Camcorder Hand-wobble Compensation,' KAIST TR
  3. Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, New Jersey
  4. Ku, K. J., Rao, S. S. and Chen, L., 1998, 'Taguchi-aided Search Method for Design Optimization of Engineering Systems,' Engineering Optimization, Vol. 30, pp. 1-23 https://doi.org/10.1080/03052159808941235
  5. Lee, K. H., Eom, I. S., Park, G. J. and Lee, W. I., 1996, 'Robust Design for Unconstrained Optimization Problems Using the Taguchi Method,' AIAA Journal, Vol. 34, No.5, pp. 1059-1063 https://doi.org/10.2514/3.13187
  6. Chen, W., Allen, J. K., Tsui, K. L. and Mistree, F., 1996, 'A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors,' ASME Journal of Mechanical Design, Vol. 118, pp.478-485 https://doi.org/10.1115/1.2826915
  7. Lucas, J. M., 1994, 'How to Achieve a Robust Process Using Response Surface Methodology,' Journal of Quality Technology, Vol. 26, No.4, pp. 248-260 https://doi.org/10.1080/00224065.1994.11979537
  8. Vining, G. G., Myers, R. H., 1990, 'Combining Taguchi and Response Surface Philosophies: A Dual Response Approach,' Journal of Quality Technology, Vol. 22, No. 1, pp. 38-45 https://doi.org/10.1080/00224065.1990.11979204
  9. Lin, D. K. J. and Tu, W., 1995, 'Dual Response Surface Optimization,' Journal of Quality Technology, Vol. 27, No. 1, pp. 34-39 https://doi.org/10.1080/00224065.1995.11979556
  10. Michael, W. and Siddall, J. N., 1981, 'The Optimization Problem with Optimal Tolerance Assignment and Full Acceptance,' ASME Journal of Mechanical Design, Vol. 103, pp. 842-848 https://doi.org/10.1115/1.3254996
  11. Balling, R. J., Free, J. C. and Parkinson, A. R., 1986, 'Consideration of Worst-Case Manufacturing Tolerances in Design Optimization,' ASME Journal of Mechanisms. Transmissions, and Automation in Design, Vol. 108, pp. 438-441 https://doi.org/10.1115/1.3258751
  12. Parkinson, A., Sorensen, C. and Pourhassan, N., 1993, 'A General Approach for Robust Optimal Design,' ASME Journal of Mechanical Design, Vol. 115, pp.74-80 https://doi.org/10.1115/1.2919328
  13. Sandgren, E., Gim, G. and Ragsdell, K. M., 1985, 'Optimal Design of a Class of Welded Structures Based on Design for Latitude,' ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 482-487 https://doi.org/10.1115/1.3260749
  14. Belegundu, A. D. and Zhang, S., 1992, 'Robustness of Design Through Minimum Sensitivity,' ASME Journal of Mechanical Design, Vol. 114, pp. 213-217
  15. Bennett, J. A. and Lust, R. V., 1990, 'Conservative Methods for Structural Optimization,' AlAA Journal, Vol. 28, No.8, pp. 1491-1496 https://doi.org/10.2514/3.25243
  16. Sundaresan, S., Ishii, K. and Houser, D. R., 1995, 'A Robust Optimization Procedure with Variations on Design Variables and Constraints,' Engineering Optimization, Vol. 24, pp. 101-117 https://doi.org/10.1080/03052159508941185
  17. Lee, K. H. and Park, G. J., 1997, 'Robust Structural Optimization Considering the Tolerances of Design Variables,' Transactions of the KSME, A, Vol. 21, No. 1, pp, 112-123
  18. Lee, K. H. and Park, G. J., 2001, 'Robust Optimization Considering Tolerances of Design Variables,' Computers & Structures, Vol. 79, pp. 77-86 https://doi.org/10.1016/S0045-7949(00)00117-6
  19. Wong, F. S., 1985, 'First Order Second Momen: Methods,' Computers & Structures, Vol. 20, pp. 779-791 https://doi.org/10.1016/0045-7949(85)90039-2
  20. Belegundu, A. D., 1988, 'Probabilistic Optimal De· sign Using Second Moment Criteria,' ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 324-329 https://doi.org/10.1115/1.3267465
  21. Rao, S. S., 1980, 'Structural Optimization by Chance Constrained Programming Techniques,' Computers & Structures, Vol. 12, pp. 777-781 https://doi.org/10.1016/0045-7949(80)90014-0
  22. Kwak, B. M. and Lee, T. W., 1987, 'Sensitivity Analysis for Reliability-Based Optimization Using an AFOSM Method,' Computers & Structures, Vol. 27, No.3, pp. 399-406 https://doi.org/10.1016/0045-7949(87)90064-2
  23. Jung, D. H. and Lee, B. C., 2000, 'Development of an Efficient Optimization Technique for Robust Design by Approximating Probability Constraints,' Transactions of the KSME, A, Vol. 24, No. 12, pp. 3053-3060
  24. Vanderplaats, G. N., 1984, Numerical Optimization Techniques for Engineering Design with Applications, McGraw-Hill, New York
  25. DOT Users Manual Version 4.20, 1995, VR&D
  26. Soderkvist, J., 1994, 'Micrornachined Gyroscopes,' Sensors and Actuators, Vol. 43, pp. 65-71 https://doi.org/10.1016/0924-4247(93)00667-S
  27. Tanaka, K., Mochida, Y., Sugimoto, M., Moriya, K., Hasegawa, T., Atsuchi, K. and Ohwada, K., 1995, 'A Micromachined Vibrating Gyroscope,' Sensors and Actuators, Vol. 50, pp. 111-115 https://doi.org/10.1016/0924-4247(96)80093-8
  28. Oh, Y. S., Lee, B. L., Baek, S. S., Kim, H. S., Kim, J G., Kang, S. J. and Song, C. M., 1998, 'A Tunable Vibratory Microgyroscope,' Sensors and Actuators, Vol. 64, pp. 51-56 https://doi.org/10.1016/S0924-4247(98)80057-5
  29. Lee, K. B., Yoon, J. B., Kang, M. S., Cho, Y. H., Youn, S. K. and Kim, C. K., 1996, 'A Surface-micromachined Tunable Microgyroscope,' Proc. IEEE Inter. Con! on Emerging Technologies and Factory Automation, Vol.2, pp. 498-502 https://doi.org/10.1109/ETFA.1996.573900
  30. Juneau, T. and Pisano, A. P., 1996, 'Micromachined Dual Input Axis Angular Rate Sensor,' Tech. Dig. Solid-State Sensor and Actuator Workshop, pp. 299-302
  31. Hong, Y. S., Lee, J. H. and Kim, S. H., 2000, 'A Laterally Driven Symmetric Micro-resonator for Gyroscopic Applications,' J. Micromech. Microeng., Vol. 10, pp. 452-458 https://doi.org/10.1088/0960-1317/10/3/322
  32. Han, J. S. and Kwak, B. M., 2000, 'Structural Optimization Using Mode Tracing and Its Application to Design of a Micro-Gyroscope,' Proc. CAD/CAM, pp. 181-186
  33. Han, J. S. and Kwak, B. M., 2001, 'Robust Optimal Design of a Vibratory Micro Gyroscope Considering Fabrication Errors,' J. Micromech. Microeng., Vol. 11, pp. 662-671 https://doi.org/10.1088/0960-1317/11/6/307
  34. ABAQUS Theory Manual Version 5.8, 1998, Hibbitt, Karlsson & Sorensen, Inc.