Abstract
This paper proposes a restoration scheme based on mobility learning and prediction in the presence of the failure of mobility databases in mobile communication systems. In mobile communication systems, mobility databases must maintain the current location information of users to provide a fast connection for them. However, the failure of mobility databases may cause some location information to be lost. As a result, without an explicit restoration procedure, incoming calls to users may be rejected. Therefore, an explicit restoration scheme against the failure of mobility databases is needed to guarantee continuous service availability to users. Introducing mobility learning and prediction into the restoration process allows systems to locate users after a failure of mobility databases. In failure-free operations, the movement patterns of users are learned by a Neuro-Fuzzy Inference System (NFIS). After a failure, an inference process of the NFIS is initiated and the users' future location is predicted. This is used to locate lost users after a failure. This proposal differs from previous approaches using checkpoint because it does not need a backup process nor additional storage space to store checkpoint information. In addition, simulations show that our proposal can reduce the cost needed to restore the location records of lost users after a failure when compared to the checkpointing scheme
본 논문에서는 이동 통신 시스템 내에 존재하는 이동성 데이타베이스의 실패 처리를 위한 이동성 학습과 예측에 기반한 회복 기법을 제안한다. 이동 통신 시스템에서 이동성 데이타베이스는 사용자들에게 빠른 연결을 제공하기 위해 사용자의 현재 위치 정보를 유지해야 한다 그러나, 이동성 데이터베이스의 실패는 사용자의 위치 정보를 잃어버리게 만든다. 결과적으로, 명백한 회복 과정 없이는 실패 상황에서 사용자의 호 요청은 거절된다. 따라서, 이동성 데이타베이스에 실패가 발생하였을 때, 실패에 효과적으로 대처할 수 있는 명백한 회복 기법이 사용자들에게 연속적인 서비스 가용성을 보장해 주기 위해서 필요하다. 본 논문의 회복 기법에서 사용되는 이동성 학습과 예측은 이동성 데이타베이스의 실패 후 시스템에 의해서 사용자의 위치를 파악하기 위한 기능을 담당한다. 실패 없는 연산 동안 사용자의 이동 패턴은 뉴로-퍼지 추론 시스템에 의해서 학습되며, 학습된 위치 정보는 실패 후 잃어버린 사용자의 위치를 파악하기 위해서 사용된다. 따라서, 본 논문의 회복 기법은 백업 과정과 검사점 정보를 저장하기 위해 필요한 부가적인 저장 공간을 요구하지 않기 때문에 검사점을 사용하는 이전의 접근방법과 다르다. 게다가, 성능 분석을 위한 시뮬레이션은 본 논문의 회복 기법이 실패 후 잃어버린 사용자의 위치 정보를 회복하는데 소요되는 비용을 검사점에 기반한 회복 기법과 비교하여 상당히 줄일 수 있음을 보여준다.