• Title/Summary/Keyword: Mobility Learning and Prediction

Search Result 15, Processing Time 0.026 seconds

Failure Restoration of Mobility Databases by Learning and Prediction of User Mobility in Mobile Communication System (이동 통신 시스템에서 사용자 이동성의 학습과 예측에 의한 이동성 데이타베이스의 실채 회복)

  • Gil, Joon-Min;Hwang, Chong-Sun;Jeong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.412-427
    • /
    • 2002
  • This paper proposes a restoration scheme based on mobility learning and prediction in the presence of the failure of mobility databases in mobile communication systems. In mobile communication systems, mobility databases must maintain the current location information of users to provide a fast connection for them. However, the failure of mobility databases may cause some location information to be lost. As a result, without an explicit restoration procedure, incoming calls to users may be rejected. Therefore, an explicit restoration scheme against the failure of mobility databases is needed to guarantee continuous service availability to users. Introducing mobility learning and prediction into the restoration process allows systems to locate users after a failure of mobility databases. In failure-free operations, the movement patterns of users are learned by a Neuro-Fuzzy Inference System (NFIS). After a failure, an inference process of the NFIS is initiated and the users' future location is predicted. This is used to locate lost users after a failure. This proposal differs from previous approaches using checkpoint because it does not need a backup process nor additional storage space to store checkpoint information. In addition, simulations show that our proposal can reduce the cost needed to restore the location records of lost users after a failure when compared to the checkpointing scheme

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

Diabetes Detection and Forecasting using Machine Learning Approaches: Current State-of-the-art

  • Alwalid Alhashem;Aiman Abdulbaset ;Faisal Almudarra ;Hazzaa Alshareef ;Mshari Alqasoumi ;Atta-ur Rahman ;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.199-208
    • /
    • 2023
  • The emergence of COVID-19 virus has shaken almost every aspect of human life including but not limited to social, financial, and economic changes. One of the most significant impacts was obviously healthcare. Now though the pandemic has been over, its aftereffects are still there. Among them, a prominent one is people lifestyle. Work from home, enhanced screen time, limited mobility and walking habits, junk food, lack of sleep etc. are several factors that have still been affecting human health. Consequently, diseases like diabetes, high blood pressure, anxiety etc. have been emerging at a speed never witnessed before and it mainly includes the people at young age. The situation demands an early prediction, detection, and warning system to alert the people at risk. AI and Machine learning has been investigated tremendously for solving the problems in almost every aspect of human life, especially healthcare and results are promising. This study focuses on reviewing the machine learning based approaches conducted in detection and prediction of diabetes especially during and post pandemic era. That will help find a research gap and significance of the study especially for the researchers and scholars in the same field.

Design of a MapReduce-Based Mobility Pattern Mining System for Next Place Prediction (다음 장소 예측을 위한 맵리듀스 기반의 이동 패턴 마이닝 시스템 설계)

  • Kim, Jongwhan;Lee, Seokjun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.321-328
    • /
    • 2014
  • In this paper, we present a MapReduce-based mobility pattern mining system which can predict efficiently the next place of mobile users. It learns the mobility pattern model of each user, represented by Hidden Markov Models(HMM), from a large-scale trajectory dataset, and then predicts the next place for the user to visit by applying the learned models to the current trajectory. Our system consists of two parts: the back-end part, in which the mobility pattern models are learned for individual users, and the front-end part, where the next place for a certain user to visit is predicted based on the mobility pattern models. While the back-end part comprises of three distinct MapReduce modules for POI extraction, trajectory transformation, and mobility pattern model learning, the front-end part has two different modules for candidate route generation and next place prediction. Map and reduce functions of each module in our system were designed to utilize the underlying Hadoop infrastructure enough to maximize the parallel processing. We performed experiments to evaluate the performance of the proposed system by using a large-scale open benchmark dataset, GeoLife, and then could make sure of high performance of our system as results of the experiments.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.13-20
    • /
    • 2022
  • It's proposed and analyzed ML(Machine Learning) models to predict vehicle FC(Fuel Consumption) in real-time. The test driving was done for a car to measure vehicle speed, acceleration, road gradient and FC for training dataset. The various ML models were trained with feature data of speed, acceleration and road-gradient for target FC. There are two kind of ML models and one is regression type of linear regression and k-nearest neighbors regression and the other is classification type of k-nearest neighbors classifier, logistic regression, decision tree, random forest and gradient boosting in the study. The prediction accuracy is low in range of 0.5 ~ 0.6 for real-time FC and the classification type is more accurate than the regression ones. The prediction error for total FC has very low value of about 0.2 ~ 2.0% and regression models are more accurate than classification ones. It's for the coefficient of determination (R2) of accuracy score distributing predicted values along mean of targets as the coefficient decreases. Therefore regression models are good for total FC and classification ones are proper for real-time FC prediction.

Cooperative Detection of Moving Source Signals in Sensor Networks (센서 네트워크 환경에서 움직이는 소스 신호의 협업 검출 기법)

  • Nguyen, Minh N.H.;Chuan, Pham;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.726-732
    • /
    • 2017
  • In practical distributed sensing and prediction applications over wireless sensor networks (WSN), environmental sensing activities are highly dynamic because of noisy sensory information from moving source signals. The recent distributed online convex optimization frameworks have been developed as promising approaches for solving approximately stochastic learning problems over network of sensors in a distributed manner. Negligence of mobility consequence in the original distributed saddle point algorithm (DSPA) could strongly affect the convergence rate and stability of learning results. In this paper, we propose an integrated sliding windows mechanism in order to stabilize predictions and achieve better convergence rates in cooperative detection of a moving source signal scenario.

Sequence-to-Sequence based Mobile Trajectory Prediction Model in Wireless Network (무선 네트워크에서 시퀀스-투-시퀀스 기반 모바일 궤적 예측 모델)

  • Bang, Sammy Yap Xiang;Yang, Huigyu;Raza, Syed M.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.517-519
    • /
    • 2022
  • In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.