DOI QR코드

DOI QR Code

Detection of Gamma-Irradiated Korean Medicinal Herbs by ESR Spectroscopy

ESR Spectroscopy에 의한 감마선 조사된 한약재의 검지

  • Lee, Eun-Jeong (Laboratory for Detection of Irradiatde Foods, Korea Atomic Energy Research Institute) ;
  • Yang, Jae-Seung (Laboratory for Detection of Irradiatde Foods, Korea Atomic Energy Research Institute)
  • 이은정 (한국원자력연구소 식품검지실) ;
  • 양재승 (한국원자력연구소 식품검지실)
  • Published : 2002.08.01

Abstract

Study was carried out with electron spin resonance (ESR) spectroscopy to identify irradiated Korean medicinal herbs. Pueraria thunbergiana Benth., Angelica gigas Nakai, Agaricus blazei Murill and Astragalus membranaceus Bunge were irradiated with doses of 0, 1, 5 and 10 kGy at room temperature using a Co-60 irradiator. The irradiated Korean medicinal herbs exhibited an asymmetric absorption, which was different from the non-irradiated ones. The strength of ESR signals linearly increased by dose-dependent manner (1~10 kGy) and highly positive correlation coefficients ($R^2$=0.9428~0.9942) were obtained between the irradiation doses and the corresponding ESR signal intensities. Detection of the irradiated Korean medicinal herbs was possible even after 6 weeks of storage although the signal intensities of the irradiated samples decreased until 2 weeks at room temperature.

ESR spectroscopy를 이용하여 한약재의 방사선 조사여부를 확인하였다. 국내산 한약재 4종으로 칡, 당귀, 아가리쿠스, 황기를 0, 1, 5 및 10 kGy의 Co-60 감마선을 조사한 후, 이를 시료로 Bruker-EPR spectrometer를 이용하여 조사로 생성된 라디칼을 측정하였다. 실험결과 조사직후 감마선 조사된 한약재 4종은 ESR 특성 신호를 나타내어 비조사시료와 확실하게 구별할 수 있었다. 적용선량의 범위에서(1~10 kGy) 조사선량이 증가함에 따라 ESR 신호 크기는 직선적으로 증가하였으며, 선량의 증가에 따른 신호 크기의 증가를 나타낸 $R^2$값은 0.9428~0.9942의 높은 값을 나타내었다. 또, 이들 신호는 상온에서 2주까지는 감소하였으나 저장기간 후에도 관찰할 수 있었으므로 ESR spectroscopy를 이용한 한약재의 방사선 조사여부 판별은 6주간의 저장 후에도 측정 가능한 방법임을 알 수 있었다.

Keywords

References

  1. Jo SK, Park HR, Yu YB, Song BC, Yee ST. 2000. Stability in immunomodulation activity of irradiated Angelica gigas Nakai. J Korean Soc Food Sci Nutr 29: 134-139.
  2. Lee JM, Lee SH, Kim HM. 2000. Use of oriental herbs as medicinal food. Food Ind Nutr 5(1): 50-56.
  3. Kim YS, An DS, Woo KL, Lee DS. 1997. Moisture sorption isotherm and quality deterioration of dry jujube. Korean J Post-harvest Sci Technol 4: 33-38.
  4. Jung GT, Ju IO, Choi JS. 1998. Studies on drying and preservation of Omija (Schizandra chinensis BAILL.). Korean J Post-harvest Sci Technol 5: 217-223.
  5. Anon. 1993. Food safety. Food Irradiation Newsletter 17: 4-10.
  6. Naito S, Okada Y, Sakai T. 1988. Studies on utilization of ozone in food preservation. V. Changes in microflora of ozonetreated cereals, grains, peas, beans and spices during storage. J Jpn Soc Food Sci Technol 35: 69-77. https://doi.org/10.3136/nskkk1962.35.2_69
  7. Kwon JH, Byun MW, Lee SJ. 1994. Comparative effects of gamma irradiation and ethylene oxide fumigation on sorption properties and microbiological quality of white ginseng powder. Korean J Food Sci Technol 26: 272-277.
  8. Kwon JH, Byun MW, Cho HO, Kim JS, Lee GD. 1995. Organoleptic quality of white ginseng powder as influenced by different conditions of decontamination and storage. Korean J Post-harvest Sci Technol 2: 163-171.
  9. Kwon JH, Belanger JMR, Sigouin M, Lanthier J, Willemot C, Pare JRJ. 1990. Chemical constituents of Panax ginseng exposed to $\gamma$-irradiation. J Agric Food Chem 38: 830-833. https://doi.org/10.1021/jf00093a051
  10. Juri ML, Ito H, Watanabe H, Tamura N. 1986. Distribution of microorganism in spices and their decontamination by gamma-irradiation. Agri Biol Chem 50: 347-350. https://doi.org/10.1271/bbb1961.50.347
  11. Kwon JH, Belanger JMR, Pare JRJ. 1989. Effects of ionizing energy treatment on the quality of ginseng products. Radiat Phys Chem 34: 963-966.
  12. Yu YB, Jo SK. 2000. Evaluation on the safety of $\gamma$-irradiated Angelica gigas Nakai. Stability of active components and safety in genotoxicity test. J Korean Soc Food Sci Nutr 29: 300-306.
  13. Kim HK, Kang DS, Choi MG, Kwon JH. 2001. Detection of irradiated dried cereals from Korea and China by viscometric method. Korean J Food Sci Technol 33: 645-650.
  14. Oduko JM, Spyrou NM. 1990. Thermoluminescence of irradiated foodstuffs. Radiat Phys Chem 36: 603-607.
  15. Schreiber GA, Hoffmann A, Helle N, BӦgl KW. 1994. Methods for routine control of irradiated food. Determination of the irradiation status of shelfish by thermoluminescence analysis. Radiat Phys Chem 43: 533-544. https://doi.org/10.1016/0969-806X(94)90164-3
  16. Sanderson D. 1990. Photostimulated luminescence (PSL). A new approach toidentifying irradiated foods. BCR workshop: 13-15.
  17. Anderle N, Steffan I, Wild E, Hille P. 1996. Radiolyochemiluminescence of bones and seafood shells. A new promising method for the detection of food irradiation. Fresenius J Analytical Chem 354: 925-928.
  18. Raffi JJ, Belliardo JJ, Agnel JP. 1994. Application of ESR to identification of irradiated foodstuffs. J Chem Phys 91: 1913-1929.
  19. Raffi JJ, Stocker P. 1996. Electron paramagnetic resonance detection of irradiated foodstuffs. Appl Magn Reson 10: 357-373. https://doi.org/10.1007/BF03163119
  20. Raffi JJ, Benzaria SM. 1993. Identification of irradiated foods by electron spin resonance techniques. J Radiat Steril 1: 281-304.
  21. Stachowics W, Strzelozak-Burlinska G, Michalik J. 1992. Application of electron paramagnetic resonance (EPR) spectroscopy for control of irradiated food. J Sci Food Agric 58: 407-415. https://doi.org/10.1002/jsfa.2740580316
  22. Kiyak N. 1993. Identification of irradiated lentils. J Biological Physics 19: 15-18. https://doi.org/10.1007/BF00700127
  23. Hargreares J, Meste ML, Cornec M, Popieau Y. 1994. Electron spin resonance studies of wheat protein fractions. J Agric Food Chem 42: 2698-2702. https://doi.org/10.1021/jf00048a010
  24. Chosdu R, Erizal, Iriawan T, Hilmy N. 1995. The effect of irradiation on curcumin component of curcuma domestica. Radiat Phys Chem 46: 663-667. https://doi.org/10.1016/0969-806X(95)00238-S
  25. Chung HW, Kwon JH. 1999. Detection and absorbed-dose estimation of electron beam-irradiated dried vegetable using ESR spectroscopy. J Korean Soc Food Sci Nutr 28: 882-885.
  26. Chung HW, Delincee H, Kwon JH. 2000. Photostimulated luminescence-thermoluminescence application to detection of irradiated white ginseng powder. Korean J Food Sci Technol 32: 265-270.
  27. Desrosiers MF, Simic MG. 1988. Postirradiation dosimetry of meat by electron spin resonance spectroscopy of bones. J Agric Food Chem 36: 601-603. https://doi.org/10.1021/jf00081a049
  28. Lea JS, Dodd NJF, Swallow AJ. 1988. A method of testing for irradiation of poultry. Int J Food Sci Technol 23: 625-632.
  29. Kwon JH, Chung HW, Byun MW. 2000. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses. Radiat Phys Chem 57: 319-324. https://doi.org/10.1016/S0969-806X(99)00398-9
  30. Chung HW, Jeong JY, Kwon JH. 1999. Detection and absorbeddose estimation of irradiated enzyme powder using ESR spectroscopy. Korean J Food Sci Technol 31: 1159-1163.

Cited by

  1. PSL, TL 및 ESR 분석에 의한 감마선 조사 한약재의 검지 특성 vol.37, pp.11, 2002, https://doi.org/10.3746/jkfn.2008.37.11.1529