DOI QR코드

DOI QR Code

열선을 이용한 혼합기체의 농도와 유량의 측정

Measurement of Gas Concentration and flow Rate Using Hot Wire

  • 김영한 (동아대학교 화학공학과) ;
  • 최종정 (경남정보대학 응용화학공학계열)
  • 발행 : 2002.05.01

초록

A measurement device for gas concentration and flow rate using hot wire is developed for the utilization in industrial applications. The device has two cells of measuring and reference, and a bridge circuit is installed to detect electric current through the hot wire in the cells. An amplification of the signal and conversion to digital output are conducted for the on-line measurement with a personal computer. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. Also, the concentration of air-carbon dioxide and carbon dioxide-argon mixtures is determined for the same evaluation. The outcome of the performance test indicates that the accuracy and stability of the device is satisfactory for the purpose of industrial applications.

키워드

참고문헌

  1. Y. Sakai, T. Watanabe, S. Kamohara, T. Kushida, and I. Nakamura, 'Simultaneous measurements of concentration and velocity in a $CO_2$ jet issuing into a grid turbulence by two-sensor hot-wire probe,' Int. J. Heat and Fluid Flow, vol. 22, pp. 227-236, 2001 https://doi.org/10.1016/S0142-727X(01)00084-4
  2. A. Katsuki and K. Fukui, '$H_2$ selective gas sensor based on $SnO_2$,' Sensors and Actuators B, vol. 52, pp. 30-37, 1998 https://doi.org/10.1016/S0925-4005(98)00252-4
  3. N. H. Afgan, J. C. Pereira, A. I. Leontiev, and S. V. Puzach, 'Concept of porous wire anemometer,' Int. Comm. Heat Mass Transfer, vol. 24, pp. 411-418, 1997 https://doi.org/10.1016/S0735-1933(97)00026-2
  4. E. Hahne and J. Kallweit, 'Thermal conductivity of metal hydride materials for storage of hydrogen : Experimental investigation,' Int. J. Hydrogen Energy, vol. 23, pp. 107-114, 1998 https://doi.org/10.1016/S0360-3199(97)00020-7
  5. S. Sorge and T. Pechstein, 'Fully integrated thermal conductivity sensor for gas chromatography without dead volume,' Sensors and Actuators A, vol. 63, pp. 191-195, 1997 https://doi.org/10.1016/S0924-4247(97)80504-3
  6. I. P. Mitov and L. A. Petrov, 'Assessment of some possibilities for improving the performance of gas chromatographic thermal conductivity detectors with hot-wire sensitive elements,' J. of Chromatography, vol. 715, pp. 287-297, 1995 https://doi.org/10.1016/0021-9673(95)00595-E
  7. M. Palczewska-Tulinska and A. M. Szafranski, 'Selective physicochemical properties of dibutoxymethane,' J. Chem. Eng. Data, vol. 45, pp. 988-990, 2000 https://doi.org/10.1021/je000070l
  8. R. Dohrn, R. Treckmann, 'Vapor-phase thermal condutivity of 1,1,1,2,2,-pentafluoropropane and carbon dioxide,' Fluid Phase Equilibria, vol. 158, pp. 1021-1028, 1999 https://doi.org/10.1016/S0378-3812(99)00126-0
  9. H. Ji, H. Ohara, K. Kuramoto, A. Tsutsumi, K. Yoshida, and T. Hirama, 'Nonlinear dynamics of gas-solid circulating fluidized-bed system,' Chem. Eng. Sci., vol. 55, pp. 403-410, 2000 https://doi.org/10.1016/S0009-2509(99)00335-8
  10. N. Honda, A. Masuda, and H. Matsumura, 'Transport mechanism of deposition precursors in catalytic chemical vapor deposition studied using a reactor tube,' J. of Non-Crystalline Solids, vol. 266, pp. 100-104, 2000 https://doi.org/10.1016/S0022-3093(99)00747-4
  11. K. Abe, T. Tsushima, M. Ichikawa, A. Yamada, and M. Konagai, 'Comparison of gas-phase reactions in low-temperature growth of Si films by photochemical vapor deposition and the hot wire cell method,' J. of Non-Crystalline Solids, vol. 266, pp. 105-109, 2000 https://doi.org/10.1016/S0022-3093(99)00749-8