DNA Dynamics: a Fluorescence Resonance Energy Transfer Study Using a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook (Department of Oral Biochemistry and Molecular Biology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan University) ;
  • Lakowicz, Joseph-R. (Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine) ;
  • Piszczek, Grzegorz (Institute of Experimental Physics, University of Gdansk, ul.)
  • Published : 2002.04.01

Abstract

Fluorescent probes bound to DNA typically display nanosecond decay times and reveal only nanosecond motions. We extend the time range of measurable DNA dynamics using $[Ru(pby)_2(dppz)]^{2+}$ (bpy=2.2'-bipyridine, dppz=dipyrido[3,2-a2',3'-c]phenazine) (RuBD) which displays a mean lifetime near 90 ns. To test the usefulness of RuBD as a probe for diffusive processes in calf thymus DNA, we compared the efficiencies of fluorescence resonance energy transfer (FRET) using three donors which display lifetimes near 5 ns for acridine orange (AO), 22 ns for ethidum bromide (EB) and 92 ns for RuBD, with nile blue (NB) as the acceptor. The F rster distances for AO-NB, EB-NB and RuBD-NB donor-acceptor pairs were 42.3, 52.3, and $30.6{\;}{\AA}$, respectively. All three donors showed dramatic decreases in fluorescence intensities and more rapid intensity decays with increasing NB concentrations. The intensity decays of AO and EB in the presence of varying concentrations of NB were satisfactorily described by the one-dimensional FRET model without diffusion (Blumen and Manz, 1979). In the case of the long-lifetime donor RuBD, the experimental phase and modulation somewhat deviated from the recovered values computed from this model. The recovered NB concentrations and FRET efficiencies from the model were slightly larger than the expected values, however, the recovered and expected values did not show a significant difference. Thus, it is suggested that the lifetime of RuBD is too short to measure diffusive processes in calf thymus DNA.

Keywords

References

  1. Blumen, A. and Manz, J., On the concentration and time dependence of the energy transfer to randomly distributed acceptors. J. Chem. Phys., 71, 4694-4702 (1979) https://doi.org/10.1063/1.438253
  2. DeGraff, B. A. and Demas, J. N., Direct measurement of rotational correlation times of luminescent ruthenium(Jl) molecular probes by differential polarized phase fluorometry. J. Phys. Chem., 98, 12478-12480 (1994) https://doi.org/10.1021/j100099a006
  3. Feddersen, B. A., Piston, D. Wand Gratton, E., Digital parallel acquisition in frequency domain fluorimetry. Rev. Sci. Instrum., 60, 2929-2936 (1989) https://doi.org/10.1063/1.1140629
  4. Friedman, A. E., Chambron, J.-C., Sauvage, J.-P., Turro, N. J. and Barton, J. K., Molecular 'light switch' for DNA: $Ru(bpy)_2$ $(dppz)^{2+}$'. J Am. Chem. Soc., 112, 4960-4962 (1990) https://doi.org/10.1021/ja00168a052
  5. Gratton, E., Lakowicz, J. R., Maliwal, B. P., Cherek, H. and Laczko, G., Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J., 46, 478-486 (1984)
  6. Haugen, G. R. and Lytle, F. E., Quantitation of fluorophores in solution by pulsed laser excitation and time-filtered detection. Anal. Chem., 53, 1554-1559 (1981) https://doi.org/10.1021/ac00234a004
  7. Jenkin, Y., Friedman, A. E., Turro, N. J. and Barton, J. K., Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry, 31, 10809-10816 (1992) https://doi.org/10.1021/bi00159a023
  8. Kang, J. S. and Lakowicz, J. R., Fluorescence resonance energy transfer in calf thymus DNA from a long-lifetime metal-ligand complex to nile blue. J. Biochem. Mol. Biol., 34, 551-558 (2001)
  9. Lakowicz, J. R., Gratton, E., Laczko, G., Cherek, H. and Limkeman, M., Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J., 46, 463-477 (1984) https://doi.org/10.1016/S0006-3495(84)84043-6
  10. Lakowicz, J. R., Gryczynski, I., Kusba, J., Wiczk, W., Szmacinski, H. and Johnson, M. L., Site-to-site diffusion in proteins as observedby energy transfer and frequency domain fluorometry. Photochem. Photobiol., 59,16-29 (1994) https://doi.org/10.1111/j.1751-1097.1994.tb04996.x
  11. Lakowicz, J. R., Gryczynski, I., Piszczek, G., Tolosa, L., Nair, R, Johnson, M. L. and Nowaczyk, K., Microsecond dynamics of biological macromolecules. Methods Enzymol., 323, 473-509 (2000) https://doi.org/10.1016/S0076-6879(00)23379-X
  12. Lakowicz, J. R., Malak, H., Gryczinski, I., Castellano, F. N. and Meyer, G. J., DNA dynamics observed with long lifetime metalligand complexes. Biospectroscopy, 1, 163-168(1995) https://doi.org/10.1002/bspy.350010302
  13. Lakowicz, J. Rand Maliwal, B. P., Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys. Chem., 21, 61-78 (1985) https://doi.org/10.1016/0301-4622(85)85007-9
  14. Lakowicz, J. R., Piszczek, G. and Kang, J. S., On the possibility of long-wavelength long-lifetime high quantum-yield luminophores. Anal. Biochem., 288, 62-75 (2001) https://doi.org/10.1006/abio.2000.4860
  15. Malak, H., Gryczynski, I., Lakowicz, J. R., Meyers, G. J. and Castellano, F. N., Long-lifetime metal-ligand complexes as luminescent probes for DNA J. Fluorescence, 7, 107-112 (1997) https://doi.org/10.1007/BF02760501
  16. Maliwal, B. P., Kusba, J. and Lakowicz, J. R., Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes. Biopolymers, 35, 245-255 (1995) https://doi.org/10.1002/bip.360350213
  17. Mergny, J. L., Siama-Schwok, A, Montenay-Garestier, T., Rougee, M. and Helene, C., Fluorescence energy transfer between dimethyldiazaperopyrenium dication and ethidium intercalated in poly d(A-T). Photochem. Photobiol., 53, 555-558 (1991) https://doi.org/10.1111/j.1751-1097.1991.tb03670.x
  18. Murata, S. I., Kusba, J., Piszczek, G., Gryczynski, I. and Lakowicz, J. R., Donor fluorescence decay analysis for energy transfer in double-helical DNA with various acceptor concentrations. Biopolymers, 57, 306-315 (2000) https://doi.org/10.1002/1097-0282(2000)57:5<306::AID-BIP70>3.0.CO;2-7
  19. Murphy, C. J. and Barton, J. K., Ruthenium complexes as luminescent reporters of DNA. Methods Enzymol., 226, 576-594 (1993) https://doi.org/10.1016/0076-6879(93)26027-7
  20. Small, E. W. and Isenberg, I., Hydrodynamics properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy. Biopolymers, 16, 1907-1928 (1977) https://doi.org/10.1002/bip.1977.360160907
  21. Steinberg, I. Z., Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. Ann. Rev. Biochem., 40, 83-114 (1971) https://doi.org/10.1146/annurev.bi.40.070171.000503
  22. Steinberg, I. Z. and Katchalski, E., Theoretical analysis of the role of diffusion in chemical reactions, fluorescence quenching, and nonradiative energy transfer. J. Chem. Phys., 48, 2404-2410 (1968) https://doi.org/10.1063/1.1669460
  23. Stryer, L., Fluorescence energy transfer as a spectroscopic ruler. Ann. Rev. Biochem., 47,819-846 (1978) https://doi.org/10.1146/annurev.bi.47.070178.004131
  24. Stryer, L., Thomas, D. D. and Meares, C. F., Diffusion-enhanced fluorescence energy transfer. Ann. Rev. Biophys. Bioeng., 11,203-222 (1982) https://doi.org/10.1146/annurev.bb.11.060182.001223
  25. Terpetschnig, E., Szmacinski, H. and Lakowicz, J. R., Longlifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol., 278, 295-321 (1997) https://doi.org/10.1016/S0076-6879(97)78016-9