벤토나이트의 중금속 흡착에 대한 통계모델의 적용 및 열역학적 해석

Application of Statistical Model and Thermodynamic Analysis on Sorption of Heavy Metals by Bentonite

  • 정찬호 (대전대학교 지구시스템공학과) ;
  • 김수진 (서울대학교 지구환경과학부)
  • 발행 : 2002.06.01

초록

벤토나이트의 중금속 흡착에 대한 다양한 실험적 조건을 만족시키기 위하여 박스-벤켄(Box-Benken)의 통계적 모델을 적용하였다. 모델에 의하여 pH, 중금속의 초기농도, HCO$_3$을 변수로 하고, 각 변수에 대한 농도를 3차원으로 설정하여 벳치 실험을 실시하였다. 실험에 선택된 중금속은 Pb, Cu, Zn, Cd 4종이다. 중금속의 흡착거동에 대한 각 변수들의 영향을 표면반응 분석을 통하여 3차원으로 모델링하였다. 중금속의 흡착제거에 중금속의 초기농도와 pH가 거의 비슷한 정도로 큰 영향을 미치고 중탄산은 큰 영향을 미치지 못한다. 중금속간의 흡착경쟁은 Pb>Cu>Zn>Cd의 순서를 보인다. 아울러 pH 변화가 중금속 흡착에 미치는 영향을 실험적 및 열역학적 분석을 통하여 알아보았다. 중금속의 수산화 화합물과 탄산염 복합체의 형태로 침전이 흡착제거에 중요한 변수임이 밝혀졌다. WATEQ4F 열역학 프로그램에 의한 종분포 모델링 결과가 흡착실험결과와 다소 상이함을 보이므로 프로그램의 열역학 자료의 수정이 필요하다.

The statistical model was introduced to satisfy various experimental condition on the sorption of heavy metals (Pb, Cu, Cd, and Zn) by bentonite. The Box-Behnken model designed statistically was applied to determine relative impact among three variables such as pH, HCO$_3$ contents and heavy metal concentrations on the sorption. The SAS program was used to obtain the statistical solution. The statistical surface response analysis indicates that initial concentration of heavy metals and pH have an important effect on the sorption, and bicarbonate is not a serious variable. The sorption capability about heavy metals of bentonite is in the order of Pb>Cu>Zn>Cd. The precipitation as hydroxyl and carbonate complexes of heavy metals was thermodynamically analyzed as major mechanism of sorption under alkaline pHs and high bicarbonate solution. It was found that there is a little difference between the model prediction on the precipitation of heavy metals and the results of batch sorption experiment. The thermodynamic data of the programs have to revise to obtain the best fit condition between the model prediction and the experimental results.

키워드

참고문헌

  1. 지질공학회지 v.9 no.1 방사성폐기물 처분장 공학방벽재료로서의 국산 벤토나이트 및 제올라이트에 대한 물리화학적 특성 평가 정찬호
  2. U.S. Geol. Surv. User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of minor, tracer and redox elements in natural waters Rall, J. W.;Nordstrom, D. K.
  3. Technometrics v.2 Some New Three-level Designs for the Study of Quantitative Variables Box, G. E. P.;Behnken, D. W. https://doi.org/10.2307/1266454
  4. Clay Minerals v.31 The influence of Layer charges on Zn2+ and Pb2+ sorption by smectites Brigatti, M. F.;Campana, L.;Medici, L.;Poppi, L. https://doi.org/10.1180/claymin.1996.031.4.04
  5. J. of the Korean Nuclear Nuclear Society v.27 Studies on the sorption characteristics of 137Cs onto granite and tuff Cho, Y.;Hahn, P.;Park, S.
  6. ACS series v.244 Ion exchange;The contributions of diffuse layer sorption and surface complexation;In Aquatic chemistry;interfacial and interspecies processes Dzombak, D. A.;Hudson, J. M.;Hung, C. P.(ed.);O-Melia, C. R.(ed.);Morgan, J. J(ed.)
  7. Water, Air and Soil Poll. v.8 Influence of clay-solute interactions on aqueous heavy metal ion levels Farrah, H;Pickering, W. F. https://doi.org/10.1007/BF00294042
  8. Clay Mineralogy Grim, R. E.
  9. Soil Sc. Soc. Am. J. v.48 Specific adsorption of copper on an hydroxyaluminum montmorillonite complex Harsh, J. B;lDoner, H. E. https://doi.org/10.2136/sssaj1984.03615995004800050017x
  10. J. Colloid and Interface Sci. v.115 Modeling ionic strength effect on cation adsorption at hydrous oxide/solution interfaces Hayes, K. F.;Leckie, J. O. https://doi.org/10.1016/0021-9797(87)90078-6
  11. J. of Environmental Science and Health-Port A, Toxic/hazardous substances & environmental engineering v.A36 Mineralogical and hydrochemical effect on the adsorption removal of cesium-137 and strontium-90 by kaollinite Jeong, C. H.
  12. Econ. Environ. Geol. v.31 Influence od ionic strength, pH, and complx-forming anions on the adsorption of secium-137 and strontium-90 by kaolinite Jeong,C. H.;Cho, Y. H.;Hahn, P. S.
  13. J. of Environmental Science and Health v.31 Affinity of radioactive cesium and strontium for illite and smectite clat in the presence of groundwater ions Jeong, C. H.;Kim, C. S.;Kim, S. J.;Park, S. W. https://doi.org/10.1080/10934529609376485
  14. Ph. D.Thesis, Korea Advanced Institute of Science and Technology Study on sorption and diffusion of radioactive cobalt, strontium and cesium in rocks Park, C. K.
  15. In Metals in Groundwater Adsorption to hyterogeneous surfaces Riemsdijk, W. H.;Hiemsta, T.;Allen, H. E.(ed.);Perdue, E. M.(ed.);Brown, D. S.(ed.)
  16. Soil Sci. Soc. Am. J. v.59 Interaction of monovalent organic cations with montmorillonite Rytwo, G.;Nir, S.;Margulies, L. https://doi.org/10.2136/sssaj1995.03615995005900020041x
  17. SAS Users guide (Version 6.12) SAS
  18. Soil Sci. Soc. Am. Jour. v.54 Adsorption of heavy metals by sillicon and aluminum oxide surfaces on clay minerals Schulthess, C. P.;Hung, C. P. https://doi.org/10.2136/sssaj1990.03615995005400030008x
  19. Eur. Jour. Soil Sci. v.46 Characterization trace metal adsorption on Kaolinite Spark, K. M.;Wells J. D.;Johnson, B. B. https://doi.org/10.1111/j.1365-2389.1995.tb01359.x
  20. The Surface Chemistry of Soils Sposito, G.
  21. Chemistry of the solid-water interface;Processes at the mineral-water and particle-water interface Stumm, W.
  22. J. of Radioanalytical and Nuclear Chemistry v.140 Interaction of iodide and iodate with granitic fracture-filling minerals Ticknor, K. V.;Cho, Y. H. https://doi.org/10.1007/BF02037365
  23. Geoderma v.34 The sorption of Cd, Zn, and Ni by soil clay fractions;procedures for partition of bound forms and their interpretation Tiller, K. G.;Gerth, J.;Brummer, G. https://doi.org/10.1016/0016-7061(84)90002-8
  24. Clay minerals v.31 Adsorption od Cd and Zn on montmorillonite in the presence of a catonic pesticide Undabetia, T.;Morillo, E.;Maqueda, C. https://doi.org/10.1180/claymin.1996.031.4.05
  25. Clays and Clay Minerals v.36 Chromate adorption by kaolinite Zachara, J. M.;Cowan, C. E.lSchmidt, R. L.;Ainsworth, C. C.