DOI QR코드

DOI QR Code

Corona ion Assisted Nano-Particle Morphology Control in an Atmospheric Pressure Furnace Reactor

대기압 반응로 내 코로나 이온을 이용한 나노입자 형상의 제어

  • Published : 2002.05.01

Abstract

The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the injection of TEOS vapor, irons and reaction gas in a furnace. Ions are generated by corona discharge and these ions charge SiO$_2$particles. As a result, spherical, nonagglomerated and ultrafine particles are generated in various conditions. Their morphology, charging portion and size distribution are examined by using TEM, ESP and SMPS. As the applied voltage of electrode changes from 0 to 5.0 kV, it is observed that the melon diameter of SiO$_2$particle decreases from 94 nm to 42 nm.

Keywords

References

  1. Hahn, H., Logas, J. and Aveback, R. S., 1990, 'Sintering Characteristics of Nanocrystalline $TiO_2$,' Journal of Materials Research, Vol.5, pp. 609-614 https://doi.org/10.1557/JMR.1990.0609
  2. Pechenik, A., Piermarini, G. J. and Danforth, S. C., 1992, 'Fabrication of Transparent Silicon Nitride from Nanosize Particles,' Journal of American Ceramic Society, Vol.75, pp. 3283-3288 https://doi.org/10.1111/j.1151-2916.1992.tb04422.x
  3. Gurav, A., Kodas, T., Pluym, T. and Xiong, Y., 1993, 'Aerosol Processing of Materials,' Aerosol Science and Technology, Vol.19, pp. 411-452 https://doi.org/10.1080/02786829308959650
  4. Kodas, T. and Hampden-Smith, M., 1999, Aerosol Processing of Materials, Wiley-VCH
  5. Adachi, M., Okuyama, K. and Tohge, N., 1995, 'Particle Generation and Film Formation in an Atmospheric-Pressure Chemical Vapour Deposition Processing Using Tetraethylorthosilicate,' Journal of Material Science, Vol.30, pp. 932-937 https://doi.org/10.1007/BF01178427
  6. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., 1976, Introduction to Ceramics, Wiley Interscience
  7. Wu, M. K., Windeler, R. S., Steiner, C. K. R., Bors, T. and Friedlander, S. K., 1993, 'Controlled Synthesis of Nanosized Particles by Aerosol Processes,' Aerosol Science and Technology, Vol.19, pp. 527 https://doi.org/10.1080/02786829308959657
  8. Akhtar, M. K., Vermury, S. and Pratsinis, S. E., 1994, 'The Role of Electrolytes During Aerosol Synthesis of $TiO_2$,' Nanostructured Mat, Vol.4, pp. 537 https://doi.org/10.1016/0965-9773(94)90061-2
  9. Vermury, S. and Pratsinis, S. E., 1996, 'Charging and Coagulation During Flame Synthesis of Silica,' Journal of Aerosol Science, Vol.27, pp.951-966 https://doi.org/10.1016/0021-8502(96)00040-7
  10. 윤진욱, 양태훈, 안강호, 최만수, 2001, '반응로내 전기-수력학적 분사에 의한 비응집 초미세 $SiO_2$ 입자합성과 특성,' 대한기계학회논문집 B 권, 제 25권, 제 5 호, pp.660-665
  11. Park, D. G. and Burlitch, J. M., 1992, 'Nanoparticles of Anatase by Electrostatic Spraying of an Alkoxide Solution,' Chemistry of Materials, Vol.4, pp. 500-502 https://doi.org/10.1021/cm00021a003
  12. Borra, J. P., Camelot, D., Marijnissen, J. C. M. and Scarlett, B., 1997, 'A New Production Process of Powders with Defined Properties by Electrohydrodynamic Atomization of Liquids and Post-Production Electrical Mixing,' Journal of Electrostatics, Vol.40&41, pp.633-638 https://doi.org/10.1016/S0304-3886(97)00065-X
  13. Katz, J. L. and Hung, C. H., 1990, 'Initial Studies of Electric Field Effects On Ceramic Powder Formation in Flames,' Twenty-Third Symposium (International) on Combustion, pp. 1733-1738
  14. 안강호, 김남효, 이종호, 배귀남, 1996, 'Differential Mobility Analyzer(DMA)내의 입자운동 및 특성분석,' 대한기계학회논문집(B), 제 20 권, 제 6 호, pp. 2005-2013