References
- Barros, A.P. and Kuligowski, R.J. (1998). 'Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains.' Mon. Wea. Rev., Vol. 126, pp. 2468-2772 https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2
- Barros, A.P. and Kuligowski, R.J. (1996). 'Quantitative precipitation forecasting issues in mountainous regions.' Proc. of the Int. Conf. on Water Resour. & Environ. Res., (I), pp. 539-546
- Campolo, M., Andreussi, P., and Soldati, A. (1999). 'River flood forecasting with a neural network model.' Water Resour. Res., Vol. 35, No. 4, pp. 1191-1197 https://doi.org/10.1029/1998WR900086
- Evans, J.L. and Shemo, R.E. (1996). 'Automated identification and climatologies of various classes of convection in the Atlantic Ocean.' J. Appl. Meteorol. Vol. 35, pp. 638-652 https://doi.org/10.1175/1520-0450(1996)035<0638:APFASB>2.0.CO;2
- Hall, T., Brooks, H.E., and Doswell Ⅲ, C.A. (1999). 'Precipitation forecasting using a neural network.' Weather and Forecast., Vol. 14, pp. 338-345 https://doi.org/10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2
-
Hassibi, B., Sayed, A.H. and Kailath, T. (1994). '
$H^4$ optimality criteria for LMS and backpropagation.' Adv. in Neural Info. Process. Systems 6, pp. 351-359 -
Hassibi, B. and Kailath, T. (1995). '
$H^4$ optimal training algorithms and their relation to backpropagation.' Adv. in Neural Info. Process. Systems 7, pp. 191-199 - Hsu, K.L., Gao, X., Sorooshian, S., and Gupta, H.V. (1997). 'Precipitation estimation from remotely sensed information using artifical neural networks.' J. Appl. Meteorol., Vol. 36, pp. 1176-1190 https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
- Imrie, C.E., Durucan, S., and Korre, A. (2000). 'River flow prediction using artificial neural networks: generation beyond the calibration range.' J. Hydrol., Vol. 233, pp. 138-153 https://doi.org/10.1016/S0022-1694(00)00228-6
- Kim, G. (2001). 'Flash flood forecasting using remotely sensed information and neural networks.' Part I: model development, J. Civil Eng., KSCE, submitted
- Kuligowski, R.J. and Barros, A.P. (1998a). 'Experiments in short-term precipitation forecasting using artificial neural networks.' Mon. Weather Rev., Vol. 126, pp. 470-482 https://doi.org/10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2
- Kuligowski, R.J. and Barros, A.P. (1998b). 'Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks.' Weather and Forecast., Vol. 13, No. 4, pp. 1194-1204 https://doi.org/10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
- Maier, H.R. and Dandy, G.C. (1996). 'The use of artificial neural networks for the prediction of water quality parameters.' Water. Resour. Res., Vol. 32, No. 4, pp. 1013-1022 https://doi.org/10.1029/95WR03529
- Minns, A.W. and Hall, M.J. (1996). 'Artificial neural networks as rainfall-runoff models.' J. Hydrol. Sci. Vol. 41, pp. 399-417
- Rossow, W.B., Kinsella, E., Wolf, A., and Garder, L. (1987). International satellite cloud climatology project description of reduced radiance data, WMO TD-58. World Meteorol. Org./Int. Council of Scientific Unions
- Shamseldin, A.Y. (1997). 'Application of a neural network technique to rainfall-runoff modeling.' J. Hydrol., Vol. 199, pp. 272-294 https://doi.org/10.1016/S0022-1694(96)03330-6