Wavelet-Based Level-of-Detail Representation of 3D Objects

웨이브릿 기반의 3차원 물체 LOD 표현

  • Lee, Ha-Sup (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology) ;
  • Yang, Hyun-Seung (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology)
  • 이하섭 (한국과학기술원 전자전산학과) ;
  • 양현승 (한국과학기술원 전자전산학과)
  • Published : 2002.04.01

Abstract

In this paper, we propose a 3D object LOD(Level of Detail) modeling system that constructs a mesh from range images and generates the mesh of various LOD using the wavelet transform. In the initial mesh generation, we use the marching cube algorithm. We modify the original algorithm to apply it to construct the mesh from multiple range images efficiently. To get the base mesh we use the decimation algorithm which simplifies a mesh with preserving the topology Finally, when reconstructing new mesh which is similar to initial mesh we calculate the wavelet coefficients by using the wavelet transform. We solve the critical problem of wavelet-based methods - the surface crease problem (1) - by using the mesh simplification as the base mesh generation method.

본 연구에서는, 거리 영상에서 mesh를 만들고 그것에서 다양한 LOD(Level of Detail)의 mesh를 생성하는 3차원 물체 LOD 모델링 시스템을 제안하였다. Initial mesh 생성은 마칭 큐브 알고리즘을 사용하였다. 종래의 알고리즘을 다수의 거리 영상에서 효과적으로 mesh를 생성하도록 개선하였다. Base mesh 생성에는 topology를 유지하면서 mesh를 간략화하는 decimation 알고리즘을 사용하였다. 마지막으로 Initial mash와 유사한 새로운 mesh를 생성할 때는 웨이블릿 변환을 적용하여 웨이블릿 개수를 개산하였다. 본 연구에서는 Base mesh를 생성할 때 mesh 간략화 방법을 사용함으로써 웨이블릿 기반의 치명적인 문제인 surface crease 문제를 해결하였다.

Keywords

References

  1. Hugues Hoppe. 1996. Progressive Meshes. Computer Graphics, Vol. 30, Number Annual Conference Series, 99-108 https://doi.org/10.1145/237170.237216
  2. Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and Werner Stuetzle. 1995. Multiresolution Analysis of Arbitrary Meshes. Computer Graphics, Vol. 29, Number Annual Conference Series, 173-182 https://doi.org/10.1145/218380.218440
  3. Jovan Popovic and Hugues Hoppe. 1997. Progressive simplicial complexes. Computer Graphics, Vol. 31, Number Annual Conference Series. 217-224 https://doi.org/10.1145/258734.258852
  4. EricJ. Stollnitz, TonyD. DeRose, and DavidH. Salesin, Wavelets for Computer Graphics: A Primer. IEEE Computer Graphics and Applications, 15(3):76-84, May 1995 (part1) https://doi.org/10.1109/38.376616
  5. EricJ. Stollnitz, TonyD. DeRose, and DavidH. Salesin, Wavelets for Computer Graphics: A Primer. IEEE Computer Graphics and Applications, 15(4):75-85, July1995 (part2) https://doi.org/10.1109/38.391497
  6. EricJ. Stollnitz, TonyD. DeRose, and DavidH. Salesin, Wavelets for Computer Graphics : Theory and Appliciations. Morgan kaufmann, San Francisco, 1996
  7. William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH '87 Conference Porceedings, Vol. 21(4), 163-170 https://doi.org/10.1145/37401.37422
  8. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner . Stuetzle. 1992. Surface Reconstruction from Unorganized Point.. Computer Graphics (SIGGRAPH '92 Proceedings), Vol.26(2), 71-78 https://doi.org/10.1145/133994.134011
  9. Greg Turk and Mark Levoy. 1994. Zippered Polygon Meshes from Range Images. Computer Graphics, Vol. 28, Number Annual Conference Series, 311-318 https://doi.org/10.1145/192161.192241
  10. Ronfard, R. and Rossignac, J. Full-range approximation of triangulated polyhedra. Technical Report RC 20423, IBM Research Division, T.J. Watson Research Center, New York, (1996)
  11. Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks and William Wright. 1996. Simplification Envelopes. Computer Graphics, Vol. 30, Number Annual Conference Series, 119-128 https://doi.org/10.1145/237170.237220
  12. Gueziec, A., Surface simplification inside a tolerance volume. Technical Report RC 20440, IBM Research Division, T. J. Watson Reserch Center, New York (1996)
  13. Algorri, M.-E. and Schmitt, F., Mesh simplification. In Proceedings of EuroGraphics'96, Computer Graphics Forum, vol. 15, 77-86 (1996) https://doi.org/10.1111/1467-8659.1530077
  14. William J. Schroeder, Jonathan A. Zarge and William E. Lorensen. 1992. Decimation of Triangle Meshes. Computer Graphics (SIGGRAPH '92 Proceedings), Vol. 26(2), 65-70 https://doi.org/10.1145/133994.134010
  15. DeHaemer Jr., Michael J. and Michael J. Zyda, Simplification of Objects Rendered by Polygonal Approximations. Computer & Graphics 15(2), 175-184 (1991) https://doi.org/10.1016/0097-8493(91)90071-O
  16. Alan D. Kalvin and Russell H. Taylor, Superfaces: Polygonal Mesh Simplification with Bounded Error. Technical Report RC 19808 (#87702), IBM Research Division, T. J. Watson Research Center, New York (1994)
  17. Paul Hinker and Charles Hansen, Geometric Optimization. Proceedings of Visualization, 189-195 (1993)
  18. Greg Turk, Re-Tiling Polygonal Surfaces. Computer Graphics, 26(2), 55-64 (1992) https://doi.org/10.1145/142920.134008
  19. Greg Turk, Re-Tiling Polygonal Surfaces. Computer Graphics (SIGGRAPH 92 Proceedings) (1992) https://doi.org/10.1145/133994.134008
  20. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle, Mesh Optimization. Computer Graphics (SIGGRAPH 93 Proceedings), 19-26 (1993) https://doi.org/10.1145/166117.166119
  21. Michael Garland and Paul S. Heckbert, Surface Simplification Using Quadric Error Metrics. Computer Graphics (SIGGRAPH'97 Proceedings), (1997) https://doi.org/10.1145/258734.258849
  22. Cohen, Jonathan, Marc Olano, and Dinesh Manocha, Appearance-Preserving Simplfication. Computer Graphics (SIGGRAPH' 98 Proceedings), (1998) https://doi.org/10.1145/280814.280832
  23. Michael Lounshery, Multiresolution Analysis for Surfaces of Arbitrary Topological Type, PhD thesis, Dept. of Computer Science and Engineering, U. of Washington (1994)