DOI QR코드

DOI QR Code

Antiviral, Antimicrobial, and Cytotoxic Properties of Peptavirins A and B Produced by Apiocrea sp.14T

  • Kim, Young-Ho (School of Agricultural Biotechnology and research Center for New Bio-Materials in Agriculture, Seoul National University) ;
  • Yeo, Woon-Hyung (Korea ginseng and Tobacco Research Institute) ;
  • Yun, Bong-Sik (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Sook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Jun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoo, Ik-Dong (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Kab-Sig (Korea ginseng and Tobacco Research Institute) ;
  • Park, Eun-Kyung (Korea ginseng and Tobacco Research Institute) ;
  • Lee, Jong-Chull (Korea ginseng and Tobacco Research Institute)
  • Published : 2002.02.01

Abstract

Two peptaibol antibiotics, peptavirins A and B, which exhibited strong inhibitory effect against Tobacco mosaic vials (TMV) infection, were isolated from steam-cooked rice culture of Apiocrea sp.14T. The peptavirins were identified as new derivatives of chrysospermins, which are 19-mer and have been reported to be produced in a fungal isolate. The physicochemical properties of the peptavirins were mostly identical with chrysospermins A through D except for the UV absorption spectrum. The peptavirins inhibited the growths of the Grampositive bacteria tested, including the plant pathogenic bacterium, Corynebacterium lilium, and the fungus, Aspergillus niger. Peptavirin A was somewhat cytotoxic to cancer cell lines, especially K562 (leukemia) and UACC 62 (melanoma), whereas peptavirin B only exhibited slight cytotoxicity.

Keywords

References

  1. Balaram, P., Krishana, K., Sukumar, M., Mellor, I. R. and Sansom, M. S. 1992. The properties of ion channels formed by zervamicins. Eur. Biophys. J. 21:117-128
  2. Berg, A., Ritzau, M., Iin, W., Schlegel, B., Fleck, W. F., Heinze, S. and $Gr\ddot{a}fe$, U. 1996. Isolation and structure of bergofungin, a new antifungal peptaibol from EmericelIopsis donezkii HKI 0059. J. Antibiot. 49:817-820 https://doi.org/10.7164/antibiotics.49.817
  3. Bodo, B., Rebuffat, S., el Hajji, M. and Davoust, D. 1985. Structure of trichozianine A IIIc, an antifungal peptide from Trichoderma hamanum. J. Am. Chem. Soc. 107:6011-6017 https://doi.org/10.1021/ja00307a028
  4. Beven, L., Duval, D., Rebuffat, S., Riddell, F. G., Bodo, B. and Wroblewski, H. 1998. Membrane penneabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA. Biochim. Biophys. Acta. 1372:78-90 https://doi.org/10.1016/S0005-2736(98)00045-5
  5. Boheim, G., Hanke, W. and Jung, G. 1983. Alamethicin pore formation: voltage dependent flip-flop of $\alpha$-helix dipoles. Biophys. Struct. Mech. 9:181-191 https://doi.org/10.1007/BF00537815
  6. $Br\ddot{u}kner,$kner, H., Graf, H. and Bokel, M. 1984. Paracelsin; Characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the celIulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189-1197 https://doi.org/10.1007/BF01946646
  7. Chikanishi, T., Hasumi, K., Harada, T., Kawasaki, N. and Endo, A. 1997. Clonostachin, a novel peptaibol that inhibits platelet aggregation. J. Antibiot. 50:105-110 https://doi.org/10.7164/antibiotics.50.105
  8. Cosette, P., Rebuffat, S., Bodo, B. and Molle, G. 1999. The ionchannel activity of longibrachins LGA I and LGB II: effects of Pro-2/Ala and Gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels. Biochim. Biophys. Acta 1461:113-122 https://doi.org/10.1016/S0005-2736(99)00153-4
  9. Dornberger, K., Ihn, W., Ritzau, M., $Gr\ddot{a}fe,$ U., Schlegel, B., Fleck, W. F. and Metzger, J. W. 1995. Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma AP 101. J. Antibiot.48:977-989 https://doi.org/10.7164/antibiotics.48.977
  10. Duval, D., Cosette, P., Rebuffat, S., Duclohier, H., Bodo, B. and Molle, G. 1998. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino alcohol in the ion channel forming activity. Biochim. Biophys. Acta. 1369:309-319 https://doi.org/10.1016/S0005-2736(97)00235-6
  11. Duval, D., Riddell, F. G., Rebuffat, S., Platzer, N. and Bodo, B. 1998. lonophoric activity of the antibiotic peptaibol trichorzin PA VI: a 23Na- and 35C1-NMR study. Biochim. Biophys. Acta 1372:370-378 https://doi.org/10.1016/S0005-2736(98)00080-7
  12. Gr$\ddot{a}$fe, U., Ihn, W., Ritzau, M., Schade, W., Stengel, C., Schlegel, B., Fleck, W. F., K$\ddot{u}$nkel, W., H$\ddot{a}$tel, A. and Gutsche, W. 1995. Helioferins, novel antifungal lipopeptides from Mycogone rosea. Screening, isolation, structures and biological properties. J. Antibiot. 48:126-133 https://doi.org/10.7164/antibiotics.48.126
  13. Grigoriev, P. A., Schlegel, R., Dornberger, K. and Gr$\"a$fe, U. 1995. Formation of membrane channels by chrysospermins, new peptaibol antibiotics. Biochim. Biophys. Acta 1237:1-5 https://doi.org/10.1016/0005-2736(95)00072-B
  14. Kim, Y. H., Yeo, W.-H., Kim, Y.-S., Chae, S.-Y. and Kim, K.-S. 2000. Antiviral activity of antibiotic peptaibols, chrysospermins B and D, produced by Apiocrea sp. 14T against TMV infection. J. Microbiol. Biotechnol. 10:522-528
  15. Leclerc, G., Rebuffat, S., Goulard, C. and Bodo, B. 1998. Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains. I. Fermentation and isolation. J. Antibiot. 51: 170-177 https://doi.org/10.7164/antibiotics.51.170
  16. Lee, S.-J., Yun, B.-S., Cho, D.-H. and Yoo, I.-D. 1999. Tylopeptins A and B, new antibiotic peptides from Tyneofelleus. J. Antibiot. 52:998-1006 https://doi.org/10.7164/antibiotics.52.998
  17. Menestrina, G., Voges, K. P., Jung, G. and Boheim, G. 1986. VoItage-dependent channel formation by rods of helical polypeptides. J. Membrane Biol. 93:111-132 https://doi.org/10.1007/BF01870804
  18. Ritzau, M., Heinze, S., Dornberger, K., Berg, A., Fleck, W., Schlegel, B., H$\"a$rtl, and Gr$\"a$fe, U. 1997. Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice. J. Antibiot. 50: 722-728 https://doi.org/10.7164/antibiotics.50.722
  19. Sansom, M. S. 1993. Alamethicin and related peptaibols - model ion channels. Eur. Biophys. J. 22:105-124
  20. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107-1112 https://doi.org/10.1093/jnci/82.13.1107
  21. Snook, C. F., Woolley, G. A., Oliva, G., Pattabhi, V., Wood, S. F., Blundell, T. L. and Wallace, B. A. 1998. The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure 6:783-792 https://doi.org/10.1016/S0969-2126(98)00079-3
  22. Termovsky, V. I., Grigohev, P. A., Berestovsky, G. N., Schlegel, R., Dornberger, K. and Grafe, U. 1997. Effective diameters of ion channels formed by homologs of the antibiotic chrysosper min.Membr.Cell Biol. 11:497-505
  23. Wada, S., lida, A., Asami, K., Tachikawa, E. and Fujita, T. 1997. Role of the Gln/Glu residues of trichocellins A-II/B-II in ionchannel formation in lipid membranes and catecholamine secretion from chromaffin cells. Biochim. Biophys. Acta 1325: 209-214 https://doi.org/10.1016/S0005-2736(96)00260-X
  24. Yeo, W.-H., Kim, S.-K., Kim, S.-S., Yu, S.-H. and Park, E. K. 1994. Taxonomy and fermentation of Kitasatosporia kimorexae producing new thiopeptide antibiotics, kimorexms. J. Microbiol. Biotechnol. 4:354-359
  25. Yun, B.-S.,Yoo, I.-D., Kim, Y. H., Kim, Y.-S., Lee, S.-J., Kim, K. -S. and Yeo, W.-H. 2000. Peptavinns A and B, two new antiviral peptaibols against TMV infection. Tetrahedron Letters 41: 1429-1431 https://doi.org/10.1016/S0040-4039(99)02308-4

Cited by

  1. Inhibition ofPepper mild mottle viruswith Commercial Cellulases vol.156, pp.2, 2008, https://doi.org/10.1111/j.1439-0434.2007.01316.x
  2. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus vol.313, pp.2, 2010, https://doi.org/10.1111/j.1574-6968.2010.02135.x
  3. Peptaibols, Tetramic Acid Derivatives, Isocoumarins, and Sesquiterpenes from aBionectriasp. (MSX 47401) vol.76, pp.6, 2013, https://doi.org/10.1021/np3008842
  4. Peptides and Peptidomics: A Tool with Potential in Control of Plant Viral Diseases vol.04, pp.09, 2014, https://doi.org/10.4236/aim.2014.49060