The Principles and Metrical Applications of Immunocsensors

면역센서의 원리와 의학적 응용

  • 김의락 (계명대학교 자연과학부 화학과) ;
  • 백세환 (고려대학교 셩명정보공학과)
  • Published : 2002.04.01

Abstract

Immunosensors are of great interest because of their potential utility as specific, simple, label-free, direct detection means and provision of reduction in size, cost and time of analysis comparing with conventional immunoassay. In the last two decades, many reports have been published on the use of immunosensors for a wide range of applications to clinical diagnostics, pharmaceutical chemistry, environmental monitoring, biotechnology and food industries. There are also numerous transduction techniques developed such as electrochemical techniques, piezoelectric crystal, and surface plasmon resonance receiving much attention for the direct monitoring of immune reactions at solid surfaces. In this article, the principles, characteristics, structures, fonctions and clinical applications of immunosensors were reviewed

Keywords

References

  1. Fresenius J. Anal. Chem. v.366 Biosensors and biochips: avances in biological and medical diagnostics Vo-Dinh, T.;B. Cullum https://doi.org/10.1007/s002160051549
  2. Diagnostic nuclear medicine(2nd ed) Gottschalk, A.
  3. Methods in enzymology: immunochemical techniques Fluorescence excitation transfer immunoassay(FETI) Ullman, E. F.;P. L. Khanna;L. Longone(ed);H. Van Vunakis(ed)
  4. Clin Chem. v.37 Chemiluminescent and biouminescent techniques[Review] Kricka, L. J.
  5. Principles and practice of immunoassay Light scattering immunoassay Price, C. P.;D. J. Newman;Price, C. P.(ed);D. J. Newman(ed)
  6. Quantitative assay of immunoglobulin G. Immunochemistry v.8 Enzyme-linked immunosorbent assay(ELISA) Engvall, E.;P. Perlman
  7. Principles and practice of immunoassay Price, C. P.(ed);D. J. Newman(ed)
  8. JIFCC v.4 Problems for Improving performance in immunoassay Miyai, K.;C. P. Price
  9. Antibodies: A laboratory Manual Harlow, E.;D. Lane
  10. Anal. Chim. Acta v.303 Thiophilicgels: applications in flow-injection immunoassay for macromolecules and haptens Palmer, D. A.;J. N. Miller https://doi.org/10.1016/0003-2670(94)00536-U
  11. Evalution of a sequential competitive binding assay. J. Chromatogr. v.597 Process monitoring by flow-injection immunoassay Nilsson, M.;Hakason, H.;Mattiasson, B.
  12. Sensors and Actuators v.B49 Development of a flow-through immunoassay system Abdel-Hamid, I.;P. Atanasov;A. L. Ghindilis;E. Wilkings
  13. Nature v.184 Assay of plasma insulin in human subjects by immunological methods Yalow, R.;S. Berson
  14. Biosensors & Bioelectronics v.10 Biosensors for environmental applications Rogers, K. R. https://doi.org/10.1016/0956-5663(95)96929-S
  15. Spichiger-Keller Chemical sensor and Biosensors for Medical and Biological Applications Ursula, E.
  16. Current Opinion in Chemical Biology v.2 no.5 Biosensors development Ziegler, C.;W. Gopel https://doi.org/10.1016/S1367-5931(98)80087-2
  17. Anal. Chem. v.55 Potentiometric microbiological assay of gentamicin, streptomycin and neomycin with a carbon dioxide gas-sensing electrode Simpson, D. L.;R. K. Kobos https://doi.org/10.1021/ac00262a032
  18. Anal. Chem. v.56 Homogeneous potentiometric enzyme immunoassay for human IgG. Fonong, T.;G. A. Rechnitz https://doi.org/10.1021/ac00277a070
  19. Anal. Lett. v.18 Potentiometric enzyme immunoassay for digoxin using polystyrene beads Keating, M. Y.;G. A. Rechnitz https://doi.org/10.1080/00032718508066920
  20. Biophys. J. v.44 Electroimmunoassay. A new competitive protein binding assay using antibody-sensitive electrodes Connell, G. R.;K. M. Sanders;R. L. Williams https://doi.org/10.1016/S0006-3495(83)84284-2
  21. Analyst v.108 Cortisol antibody electrode Keatintg, M. Y.;G. A. Rechnitz https://doi.org/10.1039/an9830800766
  22. Anal. Chem. v.56 Potentiometric digoxin antibody measurements with antigen-ionophorebased membrane electrodes Keating, M. Y.;G. A. Rechnitz https://doi.org/10.1021/ac00268a048
  23. J. Membr. Sci. v.30 Antibody response of polymer membrance electrodes incorporating antigenic ionophores Bush, D. L.;G. A. Rechnitz https://doi.org/10.1016/S0376-7388(00)80125-8
  24. Anal. Lett. v.20 Monoclonal antibody biosensor for antigen monitoring Bush, D. L.;G. A. Rechnitz https://doi.org/10.1080/00032718708082595
  25. IEEE Trans Biomed. Eng. v.17 Development of an ion-selective solid-state device for neurophysiological measurements Bergveld, P.
  26. Biosens. Bioelectron. v.5 A new approach to immunoFET operation Schasfoors, R. B.;R. P. Kooyman;Berveld, P.;J. Greve https://doi.org/10.1016/0956-5663(90)80002-U
  27. Biosents . Bioelectron. v.7 A new approach to the constrction of Potentiometric immunosensors Ghindilis, A.;O. Skorobat'ko;V. Gavrilova;A. Yaropolov https://doi.org/10.1016/0956-5663(92)87008-D
  28. Anal. Chem. v.66 Simultaneous immunoassay using electrochemical detection of metal ion labels Hayes, F. J.;N. B. Halsall;W. R. Heineman https://doi.org/10.1021/ac00083a014
  29. PhilosTrans R Soc Lond B Biol. Sci. v.316 Enzyme electrodes and their application Scheller, F.;D. Kirstein;L. Kirstein;F. Schubert;U. Wollenberger https://doi.org/10.1098/rstb.1987.0019
  30. Biosensors. Fundamentals and applications Fundamentals of amperometric sensors Wilson, G. S.;Turner, A. P. F.(ed);I. Karube(ed);G. S. Wilson(ed)
  31. Anal. Biochem. v.94 Enzyme immunosensor Ⅲ.Amperometric determination of human choriogonadotrophin by membrane bound antibody Aizawa, M;A. Morioka;S. Suzuki;Y. Nagamura https://doi.org/10.1016/0003-2697(79)90784-X
  32. Anal. Lett. v.16 Amperometric enzyme sensor-based enzyme immunoassay for Factor Ⅷ-related antigen Renneberg, R.;W. Schlossler;F. Scheller https://doi.org/10.1080/00032718308065243
  33. Anal. Chem. v.56 Enzyme-linked immunoabsorbed assay with electrochemical detection for $a_1$-acid glyco protein Doyle, M. J.;H. B. Halsall;W. R. Heineman https://doi.org/10.1021/ac00277a022
  34. Biosens. Bioelectron. v.10 Development of a heterogeneous amperometric immunosensor for the determination of apolipoprotein E in seurm Meusel, M.;R. Renneberg;F. Spener;G. Schmitz https://doi.org/10.1016/0956-5663(95)96933-P
  35. Electroananalysis v.6 Electrochemical immunoassay:simple kinetic detection of alkaline phosphatase enzyme labels in limited and excess reagent systems Treloar, P. H.;A. T. Nkohkwo;J. W. Kane;D. Barber;P. M. Vadgama https://doi.org/10.1002/elan.1140060705
  36. Anal. Chim. Acta. v.310 Simultaneous Determination of folliclestimulating hormone and luteinzing hormone using a multi-analyte immunosensor Pritchard, D. J.;Morgan, H.;Cooper, J. M. https://doi.org/10.1016/0003-2670(95)00113-E
  37. Anal. Chem. v.68 Application of redox enzymes for iprobing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes Blonder, R.;E. Katz;Y. Cohen;N. Itzhak;A. Riklin;I. Willner https://doi.org/10.1021/ac960290v
  38. Biosensors & Bioelectronics v.12 no.3 An amperometric enzyme-channeling immunosensor Rishpon, J.;D. Ivniski https://doi.org/10.1016/S0956-5663(97)85337-7
  39. Anal. Chem. v.70 Sol-Gel-derived thick-film amperometric immunosensors Wang, J.;P. V. A. Pamidi;K. R. Rogers https://doi.org/10.1021/ac971093e
  40. Biosensors & Bioelectronics v.11 no.4 A one-step, separationfree amperometric enzyme immunosensor Ivnitski, D.;J. Rishpon https://doi.org/10.1016/0956-5663(96)82736-9
  41. Biosensors & Bioelectronics v.13 no.2 Amperometric immunosensor for lactate dehydrogenase LD-1 Kelly, S.;D. Compagnone;G. Guilbault https://doi.org/10.1016/S0956-5663(97)00105-X
  42. Electroanalysis v.12 no.1 Gold electrode modification with thiolated hapten for the design of amperometric and piezoelectric immunosensors Liu, M.;Q. X. Li;G. A. Rechnitz https://doi.org/10.1002/(SICI)1521-4109(20000101)12:1<21::AID-ELAN21>3.0.CO;2-Q
  43. Sensors. Actrators. B Chem. v.19 Method and apparatus for the detection of the binding reaction of immunoglobulins Rachkov, A. E.;M. I. Rozhko;T. A. Sergeyeva;S. A. Piletsky https://doi.org/10.1016/0925-4005(93)01103-B
  44. Am. Chem. Soc. Symp. Ser. v.511 A conductive polymer-based immunosensor for the analysis of pesticide residues Sandberg, R. G.
  45. Sensors and Actuators v.B34 Polyaniline label-based conductometric sensor for igG detection Sergeyeva, T. A.;N. V. Lavrik;S. A. Piletsky;A. E. Rachkov;A. V. El'skaya
  46. Biosensors & Bioelectronics v.13 no.3-4 Funtional characterization of a conducting polymer-based immunoassay system Fare, T. L.;M. D. Cabelli;S. M. Dallas;D. P. Herzog https://doi.org/10.1016/S0956-5663(97)00091-2
  47. Biosensors & Bioelectronics v.14 Conductimetric membrane strip immunosensor with polyaniline bound gold colloids as signal generator Kim, J. H.;J. H. Cho;G. S. Cha;C. W. Lee;H. B. Kim;S. H. Paek https://doi.org/10.1016/S0956-5663(99)00063-9
  48. Biosens. Bioelectr. v.10 Impedance based sensing of the the specific binding reaction between staphylococcus enterotoxin B and its antibody on an ultra-thin platinum film DeSilva, M. S.;Y. Zhang;P. J. Hesketh;G. J. Maclay;S. M. Gendel;J. R. Stetter https://doi.org/10.1016/0956-5663(95)96958-2
  49. Biosens. Bioelectr. v.11 A 'mixed' self-assembled monolayer for an impedimetric immunosensor Rickert, J.;W. Gopel;W. B. Beck;G. Jung;P. Heiduschka https://doi.org/10.1016/0956-5663(96)85927-6
  50. J. Electroanal. Chem. v.421 Direct immunosensing using differential electrochemical measurements of impedimetric Variations Maupas, H.;A. P. Soldatkin;C. Martelet;N. Jaffrezic;B. Mandrand https://doi.org/10.1016/S0022-0728(96)04837-1
  51. J. Phys. Chem. v.B102 Photoswitchable antigen-antibody interactions studied by impedance spectroscopy Patolsky, R.;B. Filanovsky;E. Katz;I. Willner
  52. Biosensors & Bioelectronics v.16 Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy Pei, R.;Z. Cheng;E. Wang;X. Yang https://doi.org/10.1016/S0956-5663(01)00150-6
  53. J. Electroanal. Chem. v.406 Impedance analysis of Si/SiO₂heterostructures grafted with antibodies: an approach for immunosensor development Maupas, H.;C. Saby;C. Martelet;P. Nicole;P. S. Alexey;C. Marie-Helene;D. Thierry;M. Bernard https://doi.org/10.1016/0022-0728(95)04443-4
  54. Electroanalysis v.12 Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product Bardea, A.;E. Katz; I. Willner https://doi.org/10.1002/1521-4109(200010)12:14<1097::AID-ELAN1097>3.0.CO;2-X
  55. Anal. Chim. Acta v.309 Immunobased elution assay for process control Beyer, K.;M. Reinecke;W. Noe;T. Scheper https://doi.org/10.1016/0003-2670(95)00092-E
  56. Anal. Lett. v.25 Detection of cocaine using the flow immunosensor Ogert, R. A.;A. W. Kusterbeck;A. Gregory;R. B. Wemhoff;R. Burke;F. S. Ligler https://doi.org/10.1080/00032719208020071
  57. Anal. Chim. Acta. v.347 Flow injection enzyme immunoassay of atrazine gerbicide in water Bjarnason, B.;N. Bousios;S. Eremin;G. Johansson https://doi.org/10.1016/S0003-2670(97)00078-0
  58. Biosensors & Bioelectronics v.12 no.4 Electrochemiluminescence flow injection immunoassay for atrazine Wilson, R.;M. H. Barker;D. J. Schiffrin;R. Abuknesha https://doi.org/10.1016/S0956-5663(96)00067-X
  59. Anal. Chem. v.60 Direct detection of immunospecies by capacitance measurements Bataillard, P.;F. Gardies;N. Jaffrezic-Renault;C. Martelet;B. Colin;B. Mandrand https://doi.org/10.1021/ac00172a011
  60. sensors & Actuators v.B24-27 Monitoring of antibody-antigen reaction with affinity sensors;experiments and models Klein, M.; R. Kates;N. Chucholoski;M. Schmitt;C. Lyden
  61. Analyst v.119 Rapid fluorescene flow injection immunoassay using a novel perfusion chromatographic meterial Palmer, D. A.;M. Evans;N. Miller;M. T. French https://doi.org/10.1039/an9941900943
  62. Anal. Chem. v.66 Flow injection renewable surface immunoassay;a new approach to immunoanalysis with fluorescence detection Pollema, D. A.;J. Ruzicha https://doi.org/10.1021/ac00083a008
  63. Anal. Chem. v.69 Capillary-based displacement flow immunosensor Narang, U.;P. R. Gauger;F. S. Ligler https://doi.org/10.1021/ac961037y
  64. Anal. Chem. v.69 A displacement flow immunosensor for explosive detection using microcapillaries Narang, U.;P. R. Gauger;F. S. Ligler https://doi.org/10.1021/ac970153d
  65. Anal. Chem. v.261 Flow-injection amperometric system for enzyme immunoassay Ivnitski, D. M.;R. A. Sitdikov;V. E. Kurochkin
  66. Anal. Chim. Acta. v.304 A disposable amperometric immunosensor for 2,4-dichlorophenoxyacetic acid. Kalab, T.;P. Skladal https://doi.org/10.1016/0003-2670(94)00641-X
  67. Anal. Chim. Acta. v.316 A multichannel immunochemical sensor for determination of 2,4-dicholophenoxyacetic acid. Skladal, P.;T. Kalab https://doi.org/10.1016/0003-2670(95)00342-W
  68. Lett. Appl. Bacteriol. v.11 An improved amperometric immunosensor for the detection and enumeration of protein A-bearing Staphylococcus aureus Mirhabibollahi, B.;J. L. Brooks;R. G. Kroll
  69. J. Appl. Bacteriol. v.73 Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in food Brooks, J. L.;B. Mirhabibollahi;R. G. Kroll https://doi.org/10.1111/j.1365-2672.1992.tb02977.x
  70. Biosensors & Bioelectronics v.10 Development of heterogeneous amperometric immunosensor for the determination of apolipoprotein E in serum Meusel, M.;R. Renneberg;F. Spener;G. Schmitz https://doi.org/10.1016/0956-5663(95)96933-P
  71. Anal. Chim. Acta. v.304 Immunosensing with amperometric detection, using galactosidase as label and Ρ-aminophenyl-β- galactopyranoside as substrate Masson, M.;Z. Liu;T. Haruyama;E. Kobatake;Y. Ikariyama;M. Aizawa https://doi.org/10.1016/0003-2670(94)00645-3
  72. J. Appl. Bacteriol. v.68 Development and performance of an enzyme-linked amperometric immunosensor for the detection of Staphylococcus aureus in foods Mirhabibollahi, B.;Brooks, J. L.;Kroll, R. G. https://doi.org/10.1111/j.1365-2672.1990.tb05223.x
  73. Anal. Chim. Acta v.304 Determination of p-aminophenol at picomolar concentrations based on recycling enzyme amplification Ghindilis, A. L.;A. Makower;C. G. Bauer;F. F. Bier;F. W. Scheller https://doi.org/10.1016/0003-2670(94)00580-F
  74. Biosensors & Bioelectronics v.10 Direct electron transfer bioelectronic interfaces;application to clinical analysis McNeil, C. J.;D. Athey;W. O. Ho https://doi.org/10.1016/0956-5663(95)96796-2
  75. Anal. Chem. v.62 Potentiometric biosensor employing catalytic antibodies as the molecular recongnition element Blackburn, G. E.;D. B. Talley;P. M. Booth;C. N. Durfor;M. T. Martin;A. D. Napper; A. R. Rees https://doi.org/10.1021/ac00219a011
  76. Bioelectrocatalysis In Comprehensive Treatise of Electrochemistry v.10 Bioelectrochemistry Tarasevich, M. R.;S. Srinivasan(ed);Yu. A. Chizmadzhec;J. O'M. Bockris;B. E. Conway;E. Yeager
  77. Dokl. Phys. Chem. v.240 Bioelectrocatalysis;Equilibrium oxygen potential in the presence of laccase Berezin, I. V.;V. A. Bogdanovskaya;S. D. Varfolomeev;M. R. Tarasevich;A. I. Yaropolov
  78. Biosensors & Bioelectronics v.7 A new approach to the construction of potentiometric immunosensors Ghindilis, A. L.;O. W. Skorobogat'ko;V. P. Garcrilova;A. I. Yaropolov https://doi.org/10.1016/0956-5663(92)87008-D
  79. J. Electroanal. Chem. v.350 Utilization of Nafionmodified electrode in competitive homogeneous electrochemical immunoassay involving a redox cationic labelled hapten-phenytoin Le Gal La Salle;A. Limoges;B. Limoges;J. Y. Anizon;C. Degrand https://doi.org/10.1016/0022-0728(93)80215-4
  80. Anal. Chem. v.66 Multilabeling of ferrocenes to a glucose oxidasedigoxin conjugate for the development of a homegeneous electroenzymatic immunoassay Suzawa, T.;Y. Ikariyama;M. Aizawa https://doi.org/10.1021/ac00094a008
  81. Anal. Lett. v.28 Nanomolar detection of the ferrocene derivatives using a recycling enzyme electrode;Development of the redox label immunoassay Ghindilis, A. L.;A. Makower;F. W. Scheller https://doi.org/10.1080/00032719508006013
  82. Anal. Chem. v.66 Simultaneous immunoassay using electrochemical detection of metal ion labels Hayes, F. J.;H. B. Halsall;W. R. Heineman https://doi.org/10.1021/ac00083a014
  83. Fresenius J. Anal. Chem. v.346 Direct potentiometric immunoelectrodes Ⅲ. A graphite based atrazine immunoelectrode Engel, L.;W. Baumann https://doi.org/10.1007/BF00321284
  84. Fresenius J. Anal. Chem. v.349 Direct potentiometric immunoelectrodes;Ⅳ.An immunoelectrode for the trace level determination of atrazine by separate incubation and potential measurement step. Engel, L.;Baumann, W. https://doi.org/10.1007/BF00322931
  85. Anal. Chim. Acta. v.249 Antibody- and receptor-based biosensors for detection and process control Taylor, R.;I. G. Marenchic;R. H. Spencer https://doi.org/10.1016/0003-2670(91)87009-V
  86. Comp. Rend. v.91 Development, par pression de l'electricite polarize des crystaux hemiedries et faces inclines Curie, J.;P. Curie
  87. Piezoelectricity Cady, W. G.
  88. Z. Phys. v.155 The use of oscillators for weighting thin layers and for micro weighting Sauerbrey, G. Z. https://doi.org/10.1007/BF01337937
  89. Anal. Lett. v.24 Piezoelectric(PZ) immunosensors amd their applications Suleiman, A. A.;G. G. Guilbault https://doi.org/10.1080/00032719108052972
  90. Sensors and Actuators v.B24-25 Selective and repeatable detection of human serum albumin by using piezoelectric immunosensor Sakai, G.;T. Saiki;T. Uda;N. Miura;N. Yamazoe
  91. Biosensors & Bioelectronics v.9 Determination of immunoglobulin M concentration by piezoelectric crystal immunobiosensor coated with protamine Suri, C. R.;M. Raje;G. C. Mishra https://doi.org/10.1016/0956-5663(94)90016-7
  92. Fresenius J. Anal. Chem. v.346 Determination of bovine haemiglobin by a piezoelectric crystal immunosensor Shao, B.;Q. Hu;J. Hu;X. Zhou;W. Zhang;X. Wang;X. Fan
  93. Anal. Chim. Acta. v.276 Development of a piezoelectric immunosensor for the detection of human erythrocytes Konig, B.;M. Gratzel
  94. Anal. Chim. Acta. v.280 Long-term stability and improved reusability of a piezoelectric immunosensor for human erythrocytes Konig, B.;M. Gratzel https://doi.org/10.1016/0003-2670(93)80238-G
  95. Anal. Chim. Acta. v.281 Detection of human T-lymphocytes with a piezoelectric immunosensor Konig, B.;M. Gratzel https://doi.org/10.1016/0003-2670(93)85334-G
  96. Anal. Lett. v.26 Detection of viruses and bacteria with piezoelectric immunosensors Konig, B.;M. Gratzel https://doi.org/10.1080/00032719308021481
  97. Anal. Chem. v.66 A novel immunosensor for Herpes viruses Konig, B.;M. Gratzel https://doi.org/10.1021/ac00075a005
  98. Sensors & Actuators v.B18-19 HIV serology using piezoelectric immunosensors Aberl, F.;H. Wolf;C. Kosslinger;S. Drost;P. Woias;S. Koch
  99. Anal. Chim. Acta. v.304 Highly sensitive quartz crystal immunosensor for multisample detection of herbicides Yokoyama, K.;K. Ikebukuro;E. Tamiya;I. Karube;N. Ichiki;Y. Arikawa https://doi.org/10.1016/0003-2670(94)00579-B
  100. Sensors & Actuators v.B13-14 Piezoelectric crystal immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine Miura, N.;H. Higobashi;G. Sakai;A. Takeyasu;T. Uda;N. Yamazoe
  101. Microchem. J. v.54 no.2 A piezoelectric immunosensor for detection of cocaine Attili, B. S.;A. A. Suleiman https://doi.org/10.1006/mchj.1996.0091
  102. Anal. Chim. Acta. v.336 no.1-3 Simultaneous immunoassay array and robust method Chu, X.;J. H. Jiang;G. L. Shen;R. Q. Yu https://doi.org/10.1016/S0003-2670(96)00308-X
  103. Anal. Chem. v.59 A Piezoelectric biosensor modified with protein A for immunoglobulins Muramatsu, H.;J. Dicks;E. Tamia;I. Karube https://doi.org/10.1021/ac00150a007
  104. Anal. Chem. v.66 Investigation of specific binding of antifluorescyl antibody and FAB to fluorescein lipids in langmuirblodgett films using quartz crystal microbalances Ebato, H.;C. A. Gentry;J. N. Herron;W. Muller;Y. Okahata;H. Ringsdorf;P. A. Suci https://doi.org/10.1021/ac00082a014
  105. J. ElectroAnal. Chem. v.417 Modified minolayer electrodes for electrochemical and PZ analysis;Novel immunosensor electrodes Cohen, Y.;S. Levi;S. Rubin;I. Willner https://doi.org/10.1016/S0022-0728(96)04760-2
  106. Biosensors Bioelectron v.13 no.3-4 Surface midification for development of piezoimmunosensors Storri, S.;T. Santorini;M. Minunni;M. Mascini https://doi.org/10.1016/S0956-5663(97)00119-X
  107. Fresenius Z. Anal. Chem. v.364 Self assembled monolayer for PZ immunosensors Vaughan, R.;C. K. O'Sullivan;G. G. Guilbault https://doi.org/10.1007/s002160051300
  108. Biosensors & Bioelectronics v.13 Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal Park, I. S.;N. S. Kim https://doi.org/10.1016/S0956-5663(98)00067-0
  109. Biosensors & Bioelectronics v.15 Operational characteristics of an antibodyimmobilized QCM system detecting Salmonella spp. Park, I. S.;W. Y. Kim;N. S. Kim https://doi.org/10.1016/S0956-5663(00)00053-1
  110. J. Am. Chem. Soc. v.112 PZ quartz sensors for use in clinical analysis Ebersole, R.;J. Miller;J. Moran;M. Ward https://doi.org/10.1021/ja00164a070
  111. Biosensors & Bioelectronics v.15 A comparison of protocols for the optimization of detection of bacteria using a surface acoustic wave(SAW) biosensor Howe, E.;G. Harding https://doi.org/10.1016/S0956-5663(00)00116-0
  112. Analyst v.124 Acoustic waves and the study of biochemical macromolecules and cells at the sensor-liquid interface Cavic, B. A.;G. L. Hayward;M. Thompson https://doi.org/10.1039/a903236c
  113. Biosensors. Fundamentals and application IRS devices for optical immunoassays Sutherland, R. M.;C. D. Dahne;Turner, A. P. F.(ed);Karube, I.(ed);Wilson, G. S.(ed)
  114. Surf. Sci. v.16 Finding with the recording ellipsometer surggesting rapid exchange of specific plasma proteins at solid/liquid interfaces Vroman, L.;A. Adams https://doi.org/10.1016/0039-6028(69)90037-5
  115. Sensors Actuators v.4 Surface plasmon resonance for gas detection and biosensing Liedberg, B.;C. Nylander; I. Lundstrom https://doi.org/10.1016/0250-6874(83)85036-7
  116. Sensors Actuators v.15 Integrated optical input grating couplers as biochemical sensors Nellen, P.;K. Tiefenthaler;W. Lukosz https://doi.org/10.1016/0250-6874(88)87017-3
  117. Biosensors & Bioelectronics v.10 Optical probes and transducers Brecht, A.;G. Gauglitz https://doi.org/10.1016/0956-5663(95)99230-I
  118. Optical Eng. v.33 Constrction and biomedical application of immunosensors based on fiber optics and enhanced chemiluminescence Starodub, N.;P. Arenkov;A. Starodub;V. Berezin https://doi.org/10.1117/12.177506
  119. Sensors Actuators B Chem. v.18 Fiber optic immunosensors based on chemiluminescence and their application to determine different antigens Starodub, N.;Arenkov, P.;Starodub, A.;Berezin, V. https://doi.org/10.1016/0925-4005(94)87076-4
  120. Internal reflection spectroscopy Harrick, N.
  121. Anal. Chem. v.45 Multiple internal reflection spectroscopy Harrick, N.;G. Loeb https://doi.org/10.1021/ac60326a001
  122. Biosens Bioelectron v.6 Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay Attridge, J. W.;P. B. Daniels;J. K. Deacon;G. A. Robinson;G. P. Davidson https://doi.org/10.1016/0956-5663(91)80005-I
  123. Philos Trans R Soc Lond B Biol. Sci. v.316 Optical biosensors for immunoassays;the fluorescence capillary fill device Badley, R. A.;R. A. L. Drake;I. A. Shanks;A. M. Smith;P. R. Stephenson https://doi.org/10.1098/rstb.1987.0024
  124. J. Virol. Methods. v.27 Detection of rubella antibody using an optics immunosensor Parry, R. P.;C. A. Love;G. A. Robinson https://doi.org/10.1016/0166-0934(90)90144-5
  125. Biosens. Bioelectron. v.6 An assay for human chorionic gonadotrophin using the fluorescence capillary fill device Deacon, J. K.;A. M. Thompson;A. L. Page;J. E. Stops;P. R. Roberts;S. W. Whiteley https://doi.org/10.1016/0956-5663(91)80004-H
  126. Sensors Actuators v.27 A comparison of 3 fluorophores for use in an optical whole-blood Daniels, P. B. https://doi.org/10.1016/0925-4005(94)01637-W
  127. Biosens. Bioelectron. v.6 Optical immunosensing systems meeting the market needs Robison, G. A. https://doi.org/10.1016/0956-5663(91)80003-G
  128. Clin. Chem. v.37 Optical biosensor assay(OBA™) Tsay, Y.;C. Lin;J. Lee;E. K. Gustafson;P. Appelqvist;P. Magginetti
  129. Anal. Biochem. v.137 The inter- action of proteins and ions with affinity ligands covalently coupled to silicon surfaces as monitored by ellipsometry Mandenius, C. F.;S. Welin;B. Danielsson;I. Lundstrom;K. Mosbach https://doi.org/10.1016/0003-2697(84)90354-3
  130. Anal. Biochem. v.127 A receptor- ligand reaction studied by a novel analytical tool-the Lsoscope™ ellipsometer Stenberg, M.;H. Nygren https://doi.org/10.1016/0003-2697(82)90163-4
  131. Biosens. Bioelectron. v.7 Ellipsometric immunosensors for the determination of r -interferon and human serum albumin Ruzgas, T. A.;V. T. Razumas;J. J. Kulys https://doi.org/10.1016/0956-5663(92)87009-E
  132. Thin Solid Films v.238 Langmuir-Blodgett films of immunoglobuyin IgGellipsometric study of the deposition process and of immunological activity Tronin, A.;T. Dubrovsky;C. Denitti;A. Gussoni;V. Erokhin;C. Nicolini https://doi.org/10.1016/0040-6090(94)90662-9
  133. Sensors Actuators v.15 Surface plasmon resonance applied to immunosensing Daniels, P.;J. Deacon;M. Eddowes;D. Pedley https://doi.org/10.1016/0250-6874(88)85013-3
  134. Advances in biosensors Real time biospecific interaction analysis;the integration of surface plasmon resonance detection, general biospecific interface chemistry and microfluidics into on analytical system J˙o˙nsson, U.;M. Malmqvist
  135. Biosens. Bioelectron. v.8 Enhanced surface plasmon resonance inhibition test(ESPRIT) using latex particles Severs, A.;R. Schasfoort https://doi.org/10.1016/0956-5663(93)80075-Z
  136. Advances in biosensors Intergrated optical couplers as chemical waveguide sensors Tiefenthaler, K.;Turner, A. P. F.(ed)
  137. Anal. Chim. Acta. v.293 Demonstration of an optimized evanescent field optical-fiber sensor Hale, Z. M.;F. P. Payne https://doi.org/10.1016/0003-2670(94)00104-9
  138. Anal. Biochem. v.227 A fiber optic cocaine biosensors Devine, P. J.;N. A. Anis;J. Wright;S. Kim;A. T. Eldefrawi;M. E. Eldefrawi https://doi.org/10.1006/abio.1995.1273
  139. Optical sensors Optical phase-sensitive detection Marguerre, H.
  140. Fabry-Perot interferometers Hernandez, G.
  141. Biosens. Bioelectron. v.8 The difference interferometer;a highly sensitive probe for quantification of molecular surface concentration Fattinger, C.;H. Koller;D. Schlatter;P. Wehrli https://doi.org/10.1016/0956-5663(93)80058-W
  142. Sensors Actuators v.25-27 Integrated optical difference interferometer as relative humidity sensor and differential refractometer Lukosz, W.;C. Stamm
  143. Biosens. Bioelectron. v.8 The difference interferometer;appication as a direct affinity sensor Schlatrer, D.;R. Barnes;C. Fattinger;W. Huber;J. Hu bscher;J. Hurst https://doi.org/10.1016/0956-5663(93)80059-X
  144. Biosens. Bioelectron. v.9 Immunoreactivity of adsorbed anti-human chorionic gonadotropin studied with an optical waveguide interferometric sensor Heideman, R. G.;R. P. Kooyman;J. Greve https://doi.org/10.1016/0956-5663(94)80013-8
  145. Sensors Actuators v.6 Model experiments with intergrated optical input grating couplers as biochemical sensors Nellen, P. M.;W. Lukosz
  146. Sensors Actuators v.B1 Output grating couplers on planar waveguides as integrated optical chemical sensors Lucosz, W.;P. Nellen;C. Stamm;P. Weiss
  147. Biosens. Bioelectron. v.8 The resonant mirror;a novel optical biosensor for direct sensing of biomolecular interactions;Part Ⅰ.Principle of operation and associated instrumentation Cush, R.;J. Cronin;W. Stewart;C. Maule;J. Molloy;N. Goddard https://doi.org/10.1016/0956-5663(93)80073-X
  148. Biosens. Bioelectron. v.9 Transducer aspects of biosensors Sethi, R. https://doi.org/10.1016/0956-5663(94)80127-4
  149. Biosensors & Bioelectronics v.14 Optical flow-cell multichannel immunosensor for the detection of biological warfare agents Koch, S.;H. Wolf;C. Danapel;K. A. Feller https://doi.org/10.1016/S0956-5663(99)00051-2
  150. Biosensors & Bioelectronics v.15 Highly sensitive optical chip immunoassays in human serum Schneider, B. H.;E. L. Dickinson;M. D. Vach;J. V. Hoijer;L. V. Howard https://doi.org/10.1016/S0956-5663(00)00056-7
  151. Biosensors & Bioelectronics v.15 optical chip immunoassays for hGG in human whole blood Schneider, B. H.;E. L. Dickinson;M. D. Vach;J. V. Hoijer;L. V. Howard https://doi.org/10.1016/S0956-5663(00)00118-4