Characterization of Symbiotic Bacteria from Entomopathogenic Nematode

곤충병원성 선충로부터 분리된 공생박테리아의 종별 특성

  • 박선호 (계명대학교 공학부) ;
  • 김지연 ((주)바이코시스 부설연구소)
  • Published : 2002.06.01

Abstract

Symbiotic bacteria with highly effective insecticidal activities were isolated and compared with their physiological characteristics from seven species of entomopathogenic nematodes belong to Steinernamatidae and Heterorhabditidae sp., and three of them were identified as Xenorhabdus nematophilus. Culture characteristics, insecticidal activities, pretense activities and fatty acid contents of various symbiotic bactierial isolates were also examined. In the case of cell growth and insecticidal activity, XR-PC and XR-MK were superior to other species when cultured in vitro. The insecticidal activity were highest at the early exponential growth phase, and gradually decreased with time. The protease activity of XR-DR was remarkable compared to other species. In the case of HE-HY, however the pretense activity increased in parallel with cell growth. Interestingly, the fatty acid patterns of Xenorhabdus nematophilus isolated from different emtomopathogenic nematode, showed remarkable differences in their contents of 12:0, 14:0, 16:1 cia 5 and 17:0 cyclo and hydroxy and branch factty acids were varied from 2% to 15% among total fatty acid contents.

Steinernematidae와 Heterorhabditidae속에 속하는 7종의 곤충병원성 선충으로부터 매우 강한 살충성을 갖는 공생박테리아를 분리하여 그 종별 특성을 비교하였다. 분리된 공생박테리아의 종별 배양특성, 살충특성, 단백질 분해 효소의 활성 및 지방산 함량 등이 조사되었다. XR-PC 및 XR-MK의 성장 및 살충성이 가장 우수한 것으로 나타났으며 대수증식기 초기에 살충성이 가장 높은 반면에, 시간이 지남에 따라 살충성도 점차 감소되었다. 이 살충성은 protease 역가와 직접 관련이 없었으나 XR-DR의 경우 다른 종에 비해 배양 3일째 약 4.5배의 최대 활성을 보였다. 그러나 HE-HY의 경우 균체의 성장에 비례하여 protease 역가도 계속 증가하였다. 지방간 함량의 경우 특히 공생박테리아의 종별로 12:0, 14:0, 16:1 cia 5, 17:0 cyclo에서 지방산 함량의 차이를 크게 나타내었으며 hydroxy와 branch 지방산이 전체 지방간의 약 2-15%가지 변화하는 것으로 나타났다.

Keywords

References

  1. Hominick, W. M. (1990), Entomopathogenic Rhabditid nematodes and pest control, Parasitology Today, 6, 148-152 https://doi.org/10.1016/0169-4758(90)90332-X
  2. Hurlber, R. E., Xu, J. and C. L. Small (1994), Colonial and cellular polymorphism in Xenorhabdus luminescens, Appl. Environ. Microbiol., 55, 1136-1143
  3. Klein, M. G. (1990), Efficacy against Soil Inhabiting Insect Pests, In Entomopathogenic Nematodes in Biological Control, R. Gaugler and H. K. Kaya, Eds., CRC Press, Florida
  4. Mcinerney, B. V., Gregson, R. O., Lacey, M., Akhurst, R. J., Lyons, G. R., Rhodes, S. H., Smith, D. R., Lutz, J. M. E. and A. H. White (1991), Biologically active metabolites from Xenorhabdus spp., 1. Dithiolopyrrolone derivatives with antibiotic activity, J. Natural Products, 54, 774-784 https://doi.org/10.1021/np50075a005
  5. Akhurst, R. J. (1980), Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoapletana and Heterorhabditis, J. Gen. Microbiol. 121, 303-309
  6. Schmidt, T. M., Kopecky, K. and K. H. Nealson (1989), Bioluminescence of the insect pathogen Xenorhabdus luminescens, Appl. Environ. Microbiol. 55, 2607-2612
  7. Boemare, N. and R. J. Akhurst (1988), Biochemical and physiological characterization of colony form variants in Xenorhabdus spp.(Enterobacteriaceae), J. Gen. Microbiol. 134, 751-761 https://doi.org/10.1099/00221287-134-3-751
  8. Richardson, W. H., Schmidt, T. M. and K. H. Nealson (1988), Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens, Appl. Environ. Microbiol. 54, 1602-1605
  9. Boemare, N., Laumond, C. and J. Luciani (1982), Occurrence of toxicogenesis by the entomogenous germ free nematode Neoaplectana carpocapsae Weiser in the germ free insect Galleria mellonella L, Comptes Rendus Academy Science Series III: Life Sciences, 295, 543-546
  10. Bedding, R. A. and A. S. Molyneux (1982), Penetration of insect cuticle by infective juveniles of Heterorhabditis spp.(Heterorhabditidae: Nematoda), Nematologica, 28, 354-359 https://doi.org/10.1163/187529282X00402
  11. Schmidt, T. M., Bleakley, B. and K. H. Nealson (1988), Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens, Appl. Environ. Microbiol. 54, 2793-2797
  12. Ensign, J. C., Bowen, D. J. and S. B. Bintrim (1990), Crystalline inclusion proteins and an insecticidal toxin of Xenorhabdus luminescens strain NC-19, Proceedings and Abstracts, 5th International Colloquium on Invertebrate Pathology and Microbial Control, Adelaidde, 218-221
  13. Dunphy, G. B. and J. M. Webster (1998), Virulence mechanism of Heterorhabditis heliothidi and its bacterial associate, Xenorhabdus luminescens, in non-immune larvae of the dauer wax moth, Galleria mellonella, Int. J. Parasitol. 18, 729-737 https://doi.org/10.1016/0020-7519(88)90112-9
  14. Hatab, M. A., Gaugler, R. and R. Ehlers (1998), Influence of culture method on Steinernema glaseri lipids, J. Parasitology, 84, 215-221 https://doi.org/10.2307/3284473
  15. Hatab, M. A. and R. Gaugler (1997), Growth-mediated variations in fatty acids of Xenorhabdus spp., J. Appl. Microbiol. 82, 351-358 https://doi.org/10.1046/j.1365-2672.1997.00369.x
  16. Yu, Y. S. (2001), Isolation and Characterization of a Bacterial Symbiont from Entomopathogeinc Nematodes, Ph.D. Dissertation, Dept. of Chemical Engineering, Keimyung University
  17. Akhurst, R. J. and G. Dunphy (1993), Tripartite interactions between symbioticially associated entomopathogenic bacteria nematodes, and their insect hosts, In parasites and pathogens of insects, N. Beckage, S. Thompson, and B. Federich, Eds., Academic Press, New York
  18. Dunn, P. E. and D. R. Drake (1983), Fate of bacteria injected into nature and immunized larvae of the tobacco hornwood, Manduca sexta, J. Invest. Pathol. 41, 77-85 https://doi.org/10.1016/0022-2011(83)90238-0
  19. Ryu, K. G., Bae, J. S. and S. H. Park (1999), Extracellular protease production from Xenorhabdus nematophilus, a symbiotic bacterium of entomopathogenic nematodes, Biotechnol. Bioproc. Eng. 4, 147-150 https://doi.org/10.1007/BF02932385
  20. Osterhout, G. J., Shull, V. H. and J. D. Dick (1991), Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system, J. Clin. Microbiol. 29, 1822-1830
  21. Janse, J. D. and P. H. Smits (1990), Whole cell fatty acid patterns of Xenorhabdus species, Lett. Appl. Microbioi. 10, 131-135 (1990) https://doi.org/10.1111/j.1472-765X.1990.tb00099.x
  22. Boe, B. and J. Gjerde (1980), Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae, J. Gen. Microbiol. 116, 41-49 https://doi.org/10.1099/00221287-116-1-41