DOI QR코드

DOI QR Code

The Effects of Time Scale Variation on The Runoff Calculation of TOPMODEL

TOPMODEL 유출계산에서 시간 스케일에 대한 영향 분석

  • 김경현 (부산대학교 환경기술.산업개발연구센타 연구원) ;
  • 이학수 (부산대학교 청정공학협동과정) ;
  • 김원 (한국건설기술연구원) ;
  • 정성원 (한국건설기술연구원) ;
  • 김상현 (부산대학교공과대학 환경공학과)
  • Published : 2002.05.01

Abstract

The effects of the temporal scale of input hydrological data on runoff simulation have been studied using hydrological data with various time scales. TOPMODEL has been employed to explores these effects. The Genetic a1gorithm was used to calibrate model Parameters. The results of sensitivity analysis in various time scales provide the insight of parameter space for TOPMODEL operation of different time scale. The variation of temporal scale of input hydrological data appeared to have significant impacts on the model efficiency, average water table depth, the ratio of the surface runoff to the total runoff and the calibrated parameters. Generally, the longer the time scale, the more surface runoff and the less average water table death were calculated. It is found that the impact of lime scale to runoff simulation results from the structure of TOPMODEL and the hydrographic morphology.

입력수문자료의 시간 스케일이 모형의 계산결과에 미치는 영향을 검토하였다. 동일한 강우사상에 대한 각기 다른 시간 스케일의 입력수문자료를 확보하고 이를 TOPMODEL에 적용하였다. 매개변수 보정을 위해 유전자 알고리즘을 사용하였다. 민감도 분석 결과는 상이한 시간 스케일이 TOPMODEL의 운영에 있어서 매개변수 공간에 대한 시각을 제공하였다. 입력수문자료의 시간 스케일의 변화는 모의효율과 평균 지하수위, 총유출량에 대한 지표유출과 지표하유출의 비, 그리고 매개변수 보정에 영향을 미쳤다. 시간 스케일이 커질수록 지표수유출이 많아지고 평균 지하수위가 높아지는 경향을 보였다. 이러한 결과는 TOPMODEL의 구조와 수문곡선의 형태 변화에서 비롯된 것으로 나타났다.

Keywords

References

  1. 한국건설기술연구원, (1998). 시험유역의 운영 및 수문특성 조사·연구 연구보고서, 건기연 98-077
  2. Ambroise B., Freer J. and Beven K.(1996a) 'Application of a generalized TOPMODEL to the small Rigelbach catchment, Vosges, France', Water Resour. Res. Vol. 32, No.7, pp.2147-2159 https://doi.org/10.1029/95WR03715
  3. Ambroise B., Freer J. and Beven K.(1996b) 'Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity', Water Resour. Res. Vol. 32, No.7, pp.2134-2145
  4. Beven, K.J. and Kirkby, M.J.(1979) 'A physically based variable contributing area model of basin hydrology.' Hydrol. Sci. Bull. Vol.24(1), pp.43-69 https://doi.org/10.1080/02626667909491834
  5. Clamons, S.F. and Byars, B.W.(1997) GRASS4.4 User's Reference Manual
  6. Dietterick, B.C., Lynch, J.A. and Corbett, E.S.(1999) 'A calibration procedure using TOPMODEL to determine suitability for evaluating potential climate change effects on water yield', J. the Amer. Water Resour. Assoc. Vol. 35, No.2, pp.457-468 https://doi.org/10.1111/j.1752-1688.1999.tb03603.x
  7. Franchini, M., Wendling, J., Obled C. and Todini E.(1996) 'Physical interpretation and sensitivity analysis of the TOPMODEL', J. Hydrol., Vol.175, pp.293-338 https://doi.org/10.1016/S0022-1694(96)80015-1
  8. Goldberg, D.E.(1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass pp.412
  9. Holko, L. and Lepisto, A.(1997) 'Modelling the hydrological behaviour of a mountain catchment using TOPMODEL', J. Hydrol.. Vol.196, pp.361-377 https://doi.org/10.1016/S0022-1694(96)03237-4
  10. Iorgulescu, I. and Jordan J.-p.(1994) 'Validation of TOPMODEL on a small Swiss catchment', J. Hydrol. Vol.159, pp.255-273 https://doi.org/10.1016/0022-1694(94)90260-7
  11. Nash, J.E. and Sutcliffe, J.V.(1970) 'River flow forecasting through conceptual models, I. A discussion of principles', J. Hydrol. Vol.10, pp.282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  12. Quinn, P.F,, Beven K.J,, Chevallier P. and Planchon O.(1991) 'The prediction of hillslope flow path for distributed hydrological modeling using digital terrain models', Hydro. Proc., Vol.5, pp.59-79 https://doi.org/10.1002/hyp.3360050106
  13. Western, A.W., Grayson, R.B., Bloschi, G. and Willgoose, G.R.(1999) Water Resour. Res., Vol. 35, No.3, pp.797-810 https://doi.org/10.1029/1998WR900065
  14. Wood, E.F., Sivapalan, M,, Beven, K.J, and Band, L.(1988) 'Effects of spatial variability and scale with implications to hydrologic modeling', J. Hydrol. Vol.102, pp.29-47 https://doi.org/10.1016/0022-1694(88)90090-X
  15. Wood, E.F., Sivaplan, M. and Beven K.J.(1990) 'Similarity and scale in catchment storm response', Reviews of Geophysics, pp1-18 https://doi.org/10.1029/RG028i001p00001
  16. Wood, R. and Sivapalan, M.(1995) 'Investigating the representative elementary area concept: An approach based on field data.' Scale Issue in Hydrological Modeling, pp.49-70
  17. Wolock, D.M. (1995) 'Effects of subbasin size on topographic characteristics and simulated flow paths in Sleepers River watershed, Vermont.' Water Resour. Res., Vol.31, No.8, pp.1989-1997 https://doi.org/10.1029/95WR01183
  18. Zhang, W. and Montgomery, D.R. (1994) 'Digital elevation model grid size, landscape representation, and hydrologic simulations.' Water Resour. Res., Vol.3, No.4, pp.1019-1028 https://doi.org/10.1029/93WR03553
  19. Water Resour. Res. v.30 no.4 Digital elevation model grid size, landscape representation, and hydrologic simulations Zhang,W.;Montgomery,D.R. https://doi.org/10.1029/93WR03553