Sequence Analysis and Functional Expression of the Structural and ]Regulatory Genes for Pyruvate Dehydrogenase

  • Hwan Youn (Laboratory of Biophysics, School of Biolgical Sciences, and Research Center for Molecular Microbiology, Seoul National University) ;
  • Jangyul Kwak (Department of Microbiology, Ohio State University)
  • 발행 : 2002.03.01

초록

A cluster of genes encoding the pyruvate dehydrogenase complex (PDC) of Streptomyces seoulensis, a Gram-positive bacterium, was cloned and sequenced. The genes of S. seoulensis consist of four open reading frames. The first gene, lpd, which encodes a lipoamide dehydrogenase, is followed by pdhB encoding a dihydrolipoamide acetyltransferase (E2p), pdhR, a regulatory gene, and pdhA encoding a pyruvate dehydrogenase component (Elp). Elp had an unusual homodimeric subunit, which has been known only in Gram-negative bacteria S. seoulensis E2p contains two lipoyl domains like those of humans and Streptomyces faecalis. The pdhR gene appears to be clustered with the structural genes of S. seoulensis PDC. The PdhR-overexpressed S. seoulensis howed growth retardation and the decrease of Elp, indicating that PdhR regulates the function of PDC by repressing the expression of Elp. A strain of Streptomyces licidans overexpressing S. seoulensis PdhR showed a significant decreasein the level of actinorhodin, implying a regulatory role for Streptomyces PDC in antibiotic biosynthesis.

키워드

참고문헌

  1. FEBS Lett v.287 Two lipoyl domains in the dihydrolipoamide acetyltransferase chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis Allen, A.G;R.N. Perham https://doi.org/10.1016/0014-5793(91)80052-5
  2. J. Bacteriol v.181 The Streptomyces peucetius dpsC gene determine the choice of starter unit in biosynthesis of the daunorubicin polyketide Bao, W;P.J. Sheldon;E. Wendt-Pienkowski;C.R. Hutchinson
  3. Biol. Chem. v.378 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain Berg, A;A. de Kok
  4. Gene v.30 The relation ship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences Bibb, M.J;P.R. Findlay;M.W. Johnson https://doi.org/10.1016/0378-1119(84)90116-1
  5. J. Bacteriol. v.171 Genetic characterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuccinylase, respectively Carlsson, P;L. Hederstedt https://doi.org/10.1128/jb.171.7.3667-3672.1989
  6. Gene v.231 Duplicate genes for Fe-containing superoxide dismutase in Streptomyces coelicolor A3(2) Chung, H.J;E.-J. Kim;B, Suh;J.-H.Choi;J.-H. Roe https://doi.org/10.1016/S0378-1119(99)00088-8
  7. J. Biol. Chem. v.267 Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A Dirusso, C.C;T.L. Heimert;A.K. Metzger
  8. Science v.269 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd Fleischmann, R.D(et al) https://doi.org/10.1126/science.7542800
  9. Nuleic Acids Res. v.14 Identification and nucleotide sequence of the promoter region of the Bacillus subtillis gluconate operon Fujita,Y;T.Fujita https://doi.org/10.1093/nar/14.3.1237
  10. FEMS Microbiol. Lett v.44 Functional implications of structural homologies between chloramphenicol acetyltransferase and dihydrolipoamide acetyransferase Guest, J.R https://doi.org/10.1111/j.1574-6968.1987.tb02324.x
  11. J. Mol. Biol. v.185 Genetic reconstruction and functional analysis of the repeating lipolyl domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli Guest, J.R;H.M. Lewis;L.D. Graham;L.C. Packman;R.N. Perham https://doi.org/10.1016/0022-2836(85)90059-2
  12. Ann. N.Y. Acad. Sci. v.573 Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli Guest,J.R;S.J.Angier;G.C.Russell https://doi.org/10.1111/j.1749-6632.1989.tb14988.x
  13. Eur. J. Biochem. v.174 The dihydrolipoyltransacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Molecular cloning and sequence analysis Hanemaaijer,R;A. Janssen;A. de Kok;C. Verger https://doi.org/10.1111/j.1432-1033.1988.tb14140.x
  14. FEBS Lett v.255 A common structural motif in thiamin pyrophosphate-binding enzymes Hawkins, C.F;A. Borges;R.N. Perham https://doi.org/10.1016/0014-5793(89)81064-6
  15. FEMS Microbiol. Lett. v.79 A new family of bacterial regulatory proteins Haydon, D.J;J.R. Guest https://doi.org/10.1111/j.1574-6968.1991.tb04544.x
  16. FEBS Lett. v.336 A mutation causing constitutive synthesis of the pyruvate dehydrogenase complex in Escherichia coli is located within the pdhR gene Haydon, D.J;M.A. Quail;J.R. Guest https://doi.org/10.1016/0014-5793(93)81605-Y
  17. J. Bacteriol. v.176 Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase Hein, S;A. Steinbuchel https://doi.org/10.1128/jb.176.14.4394-4408.1994
  18. J. Bacteriol. v.172 Secretory S complex of Bacillus subtilis:sequence analysis and identity to pyruvate dehydrogenase Hemila, H;A. Palva;L. Paulin;S. Arvidson;I. Palva https://doi.org/10.1128/jb.172.9.5052-5063.1990
  19. Eur. J. Biochem. v.250 Expression and characterisation of the homodimeric E1 component of the Azotobacter vinelandii pyruvate dehydrogenase complex Hengeveld, A.F;A.H. Westphal;A. de Kok https://doi.org/10.1111/j.1432-1033.1997.0260a.x
  20. Eur. J. Biochem. v.265 Pyruvate dehydrogenase from Azotobacter vinelandii. Properties of the N-terminally truncated enzyme Hengeveld, A.F;S.E. Schoustra;A.H. Westphal;A. de Kok https://doi.org/10.1046/j.1432-1327.1999.00852.x
  21. J. Gen. Microbiol v.136 Pigmented antibiotic production by Streptomyces coelicolor A3(2): kinetics and the influence of nutrients Hobbs, G;C.M. Frazer;D.C.J. Gardner;F.Flett;S.G.Oliver https://doi.org/10.1099/00221287-136-11-2291
  22. Genetic Manipulation of Streptomyces:A Laboratory Manual Hopwood, D.A;M.J. Bibb;K.F. Chater;T. Kieser;C.J. Bruton;H.M. Kieser;D.J. Lydiate;C.P. Smith;J.M. Ward
  23. J. Biol. Chem. v.263 Nucleotide sequence of a cDNA for branched chain acyltransferase with analysis of the deduced protein structure Hummel, K.B;S. Litwer;A.P. Bradford;A. Aitken;D.J. Danner;S.J. Yeaman
  24. J. Bacteriol v.179 Molecular characterization of the mdeoperon involved in I-methionine catabolism of Pseudomonas putida Inoue,H;K. Inagaki;S.I.Friguchi;T. Tamura;N.Esaki;K.Soda;H. Tanaka https://doi.org/10.1128/jb.179.12.3956-3962.1997
  25. J. Bacteriol v.178 Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600 Knobel, H.R;T. Egli;J.R. van der Meer
  26. Ann. N.Y. Acad. Sci. v.721 Correlation of the avermectin polyketide synthase genes to the avermectin structure. Implications for designing novel avermectins MacNeil,D.J;J.L.Occi;K.M.Gewain;T.MacNeil https://doi.org/10.1111/j.1749-6632.1994.tb47384.x
  27. Chem. Biol v.5 MCAT is not required for in vitro polyketide synthesis in a mininal actinorhodin polyketide synthase from Streptomyces coelicolor Matharu,A.L;R.J. Cox;J. Crosby;K.J. Byrom;T.J. Simpson https://doi.org/10.1016/S1074-5521(98)90663-9
  28. J. Bacteriol v.180 Purufication of the pyruvate dehydrogenase multienzyme complex of Zymomonas mobilis and identification and sequence analysis of the corresponding genes Neveling, U;R. Klasen;S. Bringer-Meyer;H. Sahm
  29. Biochim. Biophys. Acta v.1385 Gene and subunit organization of bacterial pyruvate dehydrogenase complexes Neveling, U;S. Bringer-Meyer;H. Sahm https://doi.org/10.1016/S0167-4838(98)00080-6
  30. FASEB J v.4 Molecular biology and biochemistry of pyruvate dehydrogenase complexes Patel, M.S;T.E. Roche https://doi.org/10.1096/fasebj.4.14.2227213
  31. Microbiology v.143 The pyruvate dehydrogenase complex of the chemolithoautotrophic bacterium Thiobacillus ferroxidans has an unusual E2-E3 subunit fusion Powles, R;D. Rawlings https://doi.org/10.1099/00221287-143-7-2189
  32. Mol. Microbiol. v.12 The pahR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex Quail,M.A;D.J. Haydon;J.R. Guest https://doi.org/10.1111/j.1365-2958.1994.tb00998.x
  33. Mol. Microbiol. v.15 Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli Quail,M.A;J.R.Guest https://doi.org/10.1111/j.1365-2958.1995.tb02265.x
  34. J. Bacteriol. v.179 Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa Rae, J.L;J.F. Cutfield;I.L. Lamont
  35. J. Biol. Chem. v.232 Studies on the nature and reactions of protein-bound lipoic acid Reed,L.J;M. Koike;M.E. Levitch;F.R. Leach
  36. Eur. J. Biochem. v.114 Pyruvate dehydrogenase component of the pyruvate dehydrogenase complex from Escherichia coli K12. Purification and characterization Saumweber, H;R. Binder;H. Bisswanger https://doi.org/10.1111/j.1432-1033.1981.tb05161.x
  37. Eur. J. Biochem. v.203 Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775 Snoep,J.L;A.H.Westphal;J.A.E.Nenen;M.J.T.de Mattos;M.J.;O.M.Neijssel;A. de Kok https://doi.org/10.1111/j.1432-1033.1992.tb19853.x
  38. Eur. J. Biochem v.141 Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase Spencer,M.E;M.G.Darlison;P.E.Stephens;I.K.Duckenfield;J.R.Guest https://doi.org/10.1111/j.1432-1033.1984.tb08200.x
  39. J. Bacteriol v.172 The lpd gene product functions as the L proteins in the Escherichia coli glycine cleavage enzyme system Steiert,P.S;L.T.Stauffer;G.V.Staffer https://doi.org/10.1128/jb.172.10.6142-6144.1990
  40. Eur. J. Biochem v.133 The pyruvate dehydrogenase complex of Escherchia Coli K12. Nucleotide sequence encoding the pyruvate dehydrogenase component Stephens, P.E;M.G. Darlson;H.M. Lewis;J.R. Guest https://doi.org/10.1111/j.1432-1033.1983.tb07441.x
  41. Eur. J. Biochem v.133 The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyl-transferase component Stephens, P.E;M.G. Darlison;H.M. Lewis;J.R. Guest https://doi.org/10.1111/j.1432-1033.1983.tb07490.x
  42. Nucleic Acids Res. v.20 Compilation and analysis of DNA sequences associated with apparent streptomycete promoters Strohl, W.R https://doi.org/10.1093/nar/20.5.961
  43. FEBS Lett v.240 Nucleotide sequence of a cDNA for the dihydrolipoamide acetyltransferase component of human pyruvate dehydrogenase complex Thekkumkara, T.J;L. Ho;I.D. Wexler;G. Pons;T.-C.Liu;M.S.Patel https://doi.org/10.1016/0014-5793(88)80337-5
  44. Proc. Natl. Acad. Sci. USA v.76 Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications Towbin, H;T. Staehelin;J. Gordon https://doi.org/10.1073/pnas.76.9.4350
  45. Eur. J. Biochem v.213 The primary structure of branched-chain 2-oxo acid dehydrogenase from Bacillus subtilis and its similarity to other 2-oxo acid dehydrogenases Wang,G.F;T.Kuriki;K.L. Roy;T. Kaneda https://doi.org/10.1111/j.1432-1033.1993.tb17858.x
  46. Eur. J. Biochem v.172 Lipoamide dehydrogenase from Azotobacter vinelandii. Molecular cloning, organization and sequence analysis of the gene Westphal, A.H;A. de Kok https://doi.org/10.1111/j.1432-1033.1988.tb13887.x
  47. Gene v.113 Codon usage in the G+C-rich Streptomyces genome Wright, F;M.J. Bibb https://doi.org/10.1016/0378-1119(92)90669-G
  48. Biochim. Biophys. Acta v.1388 Lipoamide dehydrogenase from Streptomyces seoulensis: biochemical and genetic properties Youn,H;J.Kwak;H.-D.Youn;Y.C. Hah;S.-O.Kang https://doi.org/10.1016/S0167-4838(98)00200-3
  49. J. Biol. Chem. v.270 Spectral characterization and chemical modification of catalase-peroxidase from Streptomyces sp. Youn H.D;Y.-I.Yim;K. Kim;Y.C. Hah;S.-O.Kang https://doi.org/10.1074/jbc.270.23.13740