Harbor Tranquility Analysis with the Reflection-Transmission Boundary Condition of Floating Breakwaters

부유식 방파제의 반사-투과 경계조건을 적용한 항만 정온도의 해석

  • 전인식 (건국대학교 공과대학 토목공학과) ;
  • 최민호 (건국대학교 공과대학 토목공학과) ;
  • 심재설 (한국해양연구원 연안·항만공학연구본부) ;
  • 오병철 (한국해양연구원 연안·항만공학연구본부)
  • Published : 2002.03.01

Abstract

The floating breakwater generally has an excellent water exchanging capability, but with some lowering harbor tranquility due to the wave transmission underneath floating body. In the initial stage of design, it is thus required to investigate several alternatives of breakwater layout for their performance of harbor tranquility. The present study aims to formulate a sort of reflection-transmission boundary condition of floating breakwater so that the existing numerical method using time dependent mild slope equation can still be applied to the case of floating breakwaters. The two and three dimensional tests were each performed to demonstrate the performance of the boundary condition. It was found that the reflection and transmission characteristics around the breakwater were well reproduced by the boundary condition. Finally, the reflection-transmission boundary condition were applied to a floating breakwater installed in an imaginary harbor with an irregular shape and bottom topography. The results surely showed that the present numerical method can effectively used in practical works related to the real sea construction of floating breakwaters.

부유식 방파제는 고정식 방파제에 비하여 항 내·외 해수교환성은 우수한 반면, 항내 정은도가 다소 저하되는 특징이 있다. 따라서, 설계초기단계에서 부유식 방파제의 여러 평면배치 대안에 대하여 항내 정온도를 적절히 평가할 필요가 있다. 본 연구에서는 기존의 시간의존완경사 방정식을 부유식 방파제 설치안에 대해서도 적용할 수 있도록 하기 위하여 부유식 방파제의 반사와 투과를 동시에 반영할 수 있는 일종의 반사-투과 경계조건을 정식화하였다. 본 경계조건의 성능을 검토하기 위하여 이차원 및 삼차원 해석을 수행한 결과, 수치해석에 입력된 반사 및 투과율이 수치적으로 잘 구현됨을 확인하였다. 마지막으로 본 반사-투과 경계조건을 부유식 방파제가 설치되어 있는 가상적 항만에 적용하였으며, 본 수치해석이 부유식 방파제의 실해역 설치를 위한 실무에서도 충분히 효과적으로 이용될 수 있음을 예시하였다.

Keywords

References

  1. 대한토목학회 v.21 no.1-B 독도 해역의 파랑전파 특성 전인식;황연호;오병철;심재설
  2. 한국해안·해양공학회지 v.4 no.3 최소자승법에 의한 입·반사파의 분리기법 박우선;오영민;전인식
  3. BSPG 00077-224-2, 과학기술처 해안구조물의 파력흡수를 위한 신소재 개발 연구(Ⅰ) 한국해양연구소
  4. Doctoral thesis, University of Liverpool A numerical model for the propagation of short gravity waves and the resulting circulation around nearshore structures Copeland, G. J. M.
  5. Water wave mechanics for engineers and scientists Dean, R.G.;Dalrymple, R.A.
  6. Numerical methods in offshore engineering Hydrodynamic loading of large offshore structures, three-dimensional source distribution methods Garrison, C.J.;Zienkiewicz, O.C.(ed.);Lewis, R.W.(ed.);Stagg, K.G.(ed.)
  7. Proc. 18th Japanese Conf. on Coastal Eng. A numerical wave analysis method and its application Ito., Y.;Tanimoto, K.
  8. Coastal Engineering v.7 Open boundaries in short wave simulations - A new approach Larsen, J.;Dancy, H. https://doi.org/10.1016/0378-3839(83)90022-4
  9. Proc. 8th Int. Conf. on Coastal Eng. On non-saturated breakers and hte wave run-up Le Mehaute B.
  10. miscellaneous CERC Rep. No. 86 Annotated bibliography on combined wave refraction and diffraction Liu, P.L.-F.;Boissevain, P.L.;Ebersole, B.A.;Kraus, N.C.
  11. Coastal Eng. v.19 Extended refraction-diffraction equation for surface waves Massel, S.R. https://doi.org/10.1016/0378-3839(93)90020-9
  12. Phil. Trans. Roy. Soc. London, Ser. A v.224 The diffraction theory of sea waves and shelter afforded by breakwater Penny, W.;Price, A.T.
  13. Proc. 25th Japanese Conf. on Coastal Eng. Numerical simulation of wave scattering due to a breakwater with an arbitray reflection and transmission coefficients Sakai, T.;Sato, T.;Iwagaki, Y.
  14. Potential flow of fluids Prediction of wave breaking processes at the coastline Southgate, H.N.;Rahman, M.(ed.)
  15. Coastal Eng. v.32 Time-dependent equations for wave propagation on rapidly varying topography Suh, K.;Lee, C.;Park, W. https://doi.org/10.1016/S0378-3839(97)81745-0
  16. Coastal Eng. in Japan v.29 Numerical modeling of nearshore wave field combined refraction, diffraction and breaking Watanabe, A.;Maruyama, K.