DOI QR코드

DOI QR Code

A Model Development for Swash Hydrodynamics Across the Shore

해안선 종단방향에서 소상파의 수동학적 거동 예측모형의 개발

  • Published : 2002.02.01

Abstract

In a physically realistic but simplified manner, an attempt is made in this study to develop a predictive model for swash hydrodynamics across the shore due to the storm waves on an arbitrary beach profile. Date from the SUPERTANK laboratory Data Collection Project are used for the model development, in which experiments were designed to simulate dune erosion under storm conditions at a prototype scale. The model predicts variations of swash height, velocity and period across the beach face in a swash zone. In general, the model proves to be capable of predicting variations of swash height, velocity and period across the shore. Quantitatively better predictions for the swash parameters could be achieved by improving the prediction of the beach face elevation, ymax, where the significant swash height becomes zero.

본 연구에서는 역학적으로 실질적이면서도 단순화된 방법으로 폭풍과 같은 악후시에 임의의 해안단면에서 발생하는 소상파의 수동학적 거동에 대한 예측모델을 개발하고자 한다. 실제 크기의 폭풍과 조건하에서 사구의 침식을 모의하기 위해 수행된 대형조파수조 실험에서 계측된 실험자료가 모델 개발을 위해서 활용된다. 일반적으로 본 모델은 해안종단방향에서의 소상파의 파고, 속도 및 주기의 변화를 예측할수 있음을 보인다. 정량적으로 보다 나은 소상파 변수들에 대한 예측은 유의 소상파고가 영이 되는 해빈면의 높이, ymax에 대한 예측향상을 통하여 이루어질수 있다.

Keywords

References

  1. Battjes, J.A., and Stive, M.J.F. (198.5). 'Calibration and verification of a dissipation model for random breaking waves.' J. Ceophys. Res., 90(C5), pp. 9159 9167 https://doi.org/10.1029/JC090iC05p09159
  2. Beach R.A., and Sternberg, R.W. (1991). 'Infragravity driven suspended sediment transport in the swash, inner and outer surf zone.' Proc. Coastal Sediments '91, Seattle. ASCE, pp. 114-128
  3. Bodge, K.R. (1986), Short term impoundment of longshore sediment transport. Ph.D. Dissertation, Univ. Florida, Gainesville, FL, 345 pp.
  4. Briand, M. H.G., and Kamphuis, J.W. (1993). 'Sediment transport in the surf zone: a quasi 3 D numerical model.' Coastal Eng., 20, pp. 135-156 https://doi.org/10.1016/0378-3839(93)90058-G
  5. De Vriend, M.J., and Stive, M.J.F. (1987). 'Quasi 3D modeling of nearshore currents.' Coastal Eng. 11, pp. 565 601 https://doi.org/10.1016/0378-3839(87)90027-5
  6. Fisher, J.S., and Overton, M.F. (1984). 'Numerical model for dune erosion due to wave uprush.' Proc. 19th Coastal Eng. Corf., ASCE, pp. 1553-1558
  7. Fisher, J.S., Overton, M.F., and Chisholm, T. (1986). 'Field measurements of dune erosion.' Proc. 20th Coastal Eng. Conf., ASCE, pp. 1107-1115
  8. Guza, R.T., and Thornton, E.B. (1982). 'Swash oscillation on a natural beach.' J. Geophys. Res., 87(01), pp. 483-491 https://doi.org/10.1029/JC087iC01p00483
  9. Hibberd, S., and Peregrine, D.H. (1979). 'Surf and run-up on a beach: a uniform bore.' J. Fluid Mech., 95(2), pp. 323-345 https://doi.org/10.1017/S002211207900149X
  10. Holman, R.A., and Sallenger, A.H. (1985). 'Setup and swash on a natural beach.' J. Geophys. Res., 90(C1), pp. 945-953 https://doi.org/10.1029/JC090iC01p00945
  11. Hunt, LA. (1957). 'Design of seawalls and breakwaters.' J. Waterw. Harb. Div., ASCE, 85(3), pp. 123-152
  12. Hwang, K.-N. (1999). 'Laboratory investigation of dune erosion and wave/swash hydrodynamics using SUPERTANK data.' J. of Civil Eng., KSCE, Vol.3, No.3, pp. 289-300
  13. Kamphuis, J.W. (1991). 'Alongshore sediment transport rate distributions.' Proc. Coastal Sediments '91, Seattle. ASCE, pp. 170-183
  14. Kemp, P.H., and Plinkston, D.T. (1974). 'Internal velocities in the uprush and backrush zone.' Proc. 14th Coastal Eng. Conf., ASCE, pp. 575-585
  15. Kobayashi, N., Otta, A.K., and Roy, I. (1987). 'Wave reflection and runup on rough slopes.' J. Waterw. Port. Coastal and Ocean Eng. ASCE, 113(3), pp. 282-298 https://doi.org/10.1061/(ASCE)0733-950X(1987)113:3(282)
  16. Kobayashi, N., Strzelecki, M.S., and Wurjanto, A. (1988). 'Swash oscillation and resulting sediment movement.' Proc. 21st Coastal Eng. Conf., ASCE, pp. 1167-1181
  17. Kraus N.C., Farinto, R.S., and Horikawa, K. (1981). 'Field experiments on longshore sand transport in the surf zone.' Coastal Eng. Japan, 24, pp. 171-194
  18. Kraus, N.C., Smith, J.M., and Sollitt, O.K. (1992). 'SUPERTANK laboratory' data collection project.' Proc. 23rd Coastal Eng. Conf. ASCE, pp. 2191-2204
  19. Leenknecht, D.A., Szuwalski, A., and Sherlock, A.R. (1992). Automated coastal engineering system. U.S. Army Coastal Engineering Research Center, Army Corps of Engineers, Waterways Experimental Station, Vicksburg, Mississippi
  20. Mase H., and Iwagaki, Y. (1984). 'Run-up of random waves on gentle slopes.' Proc. 19th Coastal Eng. Conf, ASCE, pp. 593-609
  21. Overton, M.F., Fisher, J.S., and Young, M.A. (1988). 'Laboratory investigation of dune erosion.' J. Waterw. Port. Coastal and Ocean Eng. ASCE, 114(3), pp. 367-373 https://doi.org/10.1061/(ASCE)0733-950X(1988)114:3(367)
  22. Overton, M.F., Fisher, J.S., and Stone, A.L. (1990). 'Large scale laboratory test of dune erosion.' Proc. 22nd Coastal Eng. Conf. ASCE, pp. 2471-2480
  23. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1989). Numerical recipes. Cambridge University Press, pp. 390-395
  24. Stive, M.J.F. (1986). 'A model for cross shore sediment transport.' Proc. 20th Coastal Eng. Conf, ASCE, pp. 1550-1564
  25. Svendsen, LA., Schaffer, H.A., and Hansen, J.B. (1987). 'The interaction between the undertow and the boundary layer flow on a beach.' J. Geophys. Res., 92(C11), pp. 11845 11856 https://doi.org/10.1029/JC092iC11p11845