DOI QR코드

DOI QR Code

Bibliographical Review on Inorganic Lithium Ion Conductors

  • He, Lian-Xing (Solid State Ionics Research, Lab., School of Material Science and Engineering, Seoul National University) ;
  • Yoo, Han-Ill (Solid State Ionics Research, Lab., School of Material Science and Engineering, Seoul National University)
  • 발행 : 2002.01.01

초록

A bibliographical review of inorganic lithium ion conductors is presented with a focus on those potential candidates for lithium battery application. A wide variety of inorganic lithium ion conductors, both crystalline ceramics and non-crystalline glasses, are considered.

키워드

참고문헌

  1. Solid State Ionics v.134 Lithium Batteries: A 50-year Perspective, 1959-2009 C. A. Vincent https://doi.org/10.1016/S0167-2738(00)00723-2
  2. J. of Power Sources v.63 Ion Conductivity of Polymer Electrolytes Derived from Poly(p-phenlene Terephthalamide) I. Kuribayashi;M. Yamadhita;S. Muraoba;K. Nagasawa https://doi.org/10.1016/S0378-7753(96)02445-7
  3. J. of Power Sources v.65 Development of a Lithium-ion Polymer Battery for Space Power Application W. J. Macklin;C. R. Jarvis;R. J. Neat;V. V. Thakur
  4. J. of Power Sources v.77 Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries J. Y. Song;Y. Y. Wang;C. C. Wan https://doi.org/10.1016/S0378-7753(98)00193-1
  5. Electrochimica Acta v.45 Recent Advances in Lithium Ion Battery Materials B. Serosati https://doi.org/10.1016/S0013-4686(00)00333-9
  6. Solid State Ionics v.143 Novel Type of Lithium-ion Polymer Electrolyte Batteries G.B. Appetechi;F. Croce;R. Marassi;S. Panero;F. Ronci;G. Savo;B. Scrosati https://doi.org/10.1016/S0167-2738(01)00835-9
  7. J. Electrochem. Soc. v.144 Novel Nanodispersive Composite Cathode for Rechargeable Litium/Polymer Batteries K. A. Striebel;S. J. Wen;D. I. Ghantous;E. J. Cairs https://doi.org/10.1149/1.1837659
  8. J. Electrochem. Soc. v.144 A Lithium Plastic Batteries Using a Cr-stabililized Manganese Spinel Cathode G. B. Appetecchi;B. Scrosati https://doi.org/10.1149/1.1837702
  9. J. Electrochem. Soc. v.144 Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/$Li_{x}Mn_2]O_4$ Rechargeable Cells D. H. Jang;S. M. Oh https://doi.org/10.1149/1.1838016
  10. J. Electrochem. Soc. v.145 Self-dischargable of LiMn_2O_4$/C Li-ion Cells in their Dischargeable State A. Blyr;C. Sigala;A. Amatucci;D. Guymard;Y. Chabre;J. M. Tarascon https://doi.org/10.1149/1.1838235
  11. J. Electrochem. Soc. v.143 $Li_9SiAlO_8$: A Lithium Ion Electrolyte for Voltages above 5.4 V, B. J. Neudecker;W. Wepper https://doi.org/10.1149/1.1836980
  12. MRS Bulletin Gas Sensors Using Solid Electrolytes N. Yamazoe;N. Miura
  13. J. of Electrceramics v.2 Potentiometric Gas Sensors for Oxidic Gases N. Yanazoe;N. Miura https://doi.org/10.1023/A:1009974506712
  14. Sensors and Actuators v.B13-14 CO₂Detection with Lithium Solid Electrolyte Sensors N. Imanaka;T. Murata;T. Kawasato;G. Adachi
  15. Solid State Ionics v.79 Solid State $CO2$ Sensor Using an Electrolyte in the System $Li_2CO_3-Li_3PO_4-Al_2O_3$ H. Zarita;Z.Y. Can;J. Mizusaki;H. Tagawa https://doi.org/10.1016/0167-2738(95)00086-L
  16. J. Electrochem. Soc. v.144 Solid State $CO_2$ Sensors with $Li_2CO_3-Li_3PO_4-LiAlO_2$ Electrolyte and $LiCoO_2-Co_3O_4$ as Solid Reference Electrolyte Y. C. Zhang;H. Tagama;S. Asakura;J. Mizusaki;H. Narita https://doi.org/10.1149/1.1838190
  17. J. Kor. Ceram. Soc. v.37 no.8 Solid State $CO_2$ Sensor Using LiCO_3-Li_3PO_4-Al_2O_3$ Solid Electrolyte and $LiMn_2O_4$ as Reference Electrode D. H. Kim;J. Y. Yoon;H. C. Park;K. H. Kim
  18. J. of Eur. Ceram. Soc. v.19 Comparative Study of Lithium Icon Conductors in the System $Li_{1+x}Al_{x}(PO_4)_3# with $Li^+$ Sensitive Membranes M. Cretin;P. Frabry https://doi.org/10.1016/S0955-2219(99)00055-2
  19. Mat. Res. Bull. v.11 Crystal Structures and Crystal Chemistry in the System $Na_{1+x}Zr_2Si_{x}P_{3-x}O_{12}$ H. P. Y. Hong https://doi.org/10.1016/0025-5408(76)90073-8
  20. Mat. Res. Bull. v.11 Fast $Na^+-ion$ Transport in Skeleton Structures J. B. Goodnough;H. P. Y. Hong;J. A. Kafalas https://doi.org/10.1016/0025-5408(76)90077-5
  21. Mat. Res. Bull. v.21 Synthesis and Crystallographic Data for the System $Li_{1+x}Ti_{2-x}In_{x}(PO_4)_3$ S. Hamdoune;M. GonDran;Q. D. Tran https://doi.org/10.1016/0025-5408(86)90212-6
  22. Mat. Res. Bull. v.12 New Solid Ionic Conductors B. E. Taylor;A. D. English;T. Berzins https://doi.org/10.1016/0025-5408(77)90161-1
  23. Mat. Res. Bull. v.21 Fast Ion Transport in LiZr_2(PO_4)_3$: Structure and Conductivity D. Petit;Ph. Colomban;G. Collin;J. P. Boilot https://doi.org/10.1016/0025-5408(86)90194-7
  24. Solid State Ionics v.28-30 Phase Relationships and Electrical Conductivity of Li_{1+x}Ge_{2-x}Al_{x}P_3O_{12}$ and $Li_{1+x}Ge_{2-x}Cr_{x}P_3P_{12} Systems S-Ch. Li;J-Y. Cai;Z-X. Lin https://doi.org/10.1016/0167-2738(88)90368-2
  25. J. Electrochem. Soc. v.140 The Electrical Properties of Ceramic Electrolytes for $LiM_{x}Ti_{2-x}(PO_4)_3 + yLi_2O$, M=Ge, Sn, Hf and Zr, Systems H. Aono;E. Sugimoto;Y. Sadaoka;N. Imanaka;G-Ya Adachi https://doi.org/10.1149/1.2220723
  26. J. Electrochem. Soc. v.137 Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate H. Aono;E. Sugimoto;Y. Sadaka;N. Imanaka;G.Ya Adachi https://doi.org/10.1149/1.2086597
  27. Solid State Ionics v.47 Electrical Property and Sinterability of $LiTi_2(PO_4)_3$ Mixed with Lithium Salt $Li_3PO_4$ or $Li_3PO_4$ H. Aono;E. Sugimoto;Y. Sadaoka;N. Imanaka;G-Ya Adachi https://doi.org/10.1016/0167-2738(91)90247-9
  28. Mat. Res. Bull. v.24 Inorganic Conductivity Studies on $Li_{1-x}M_{2-x}M_{x}P_3O_{12}$ (M=Hf, Zr, M=Ti, Nb) B. V. R. Chowdari;K. Radhakrishnan;K. A. Thomas;G. V. Subba Rao https://doi.org/10.1016/0025-5408(89)90129-3
  29. Solid State Ionics v.40/41 Ionic Conductivity and Sinterability of Lithium Tutanium Phosphates Systems H. Aono;E. Sugimoto;Y. Sadaoka;N. Imanaka;G-Ya Adachi https://doi.org/10.1016/0167-2738(90)90282-V
  30. Bull. Chem. Soc. Jpn. v.65 Electrical Properties and Sinterability for Lithium Germanium Phosphate $Li_{1+x}M_{x}Ge_{2-x}(PO_4)_3$ M=Al, Cr, Ga, Fe, Se and In System H. Aono;E. Sugimoto;Y. Sadaoka;N. Imanaka;G-Ya Adachi https://doi.org/10.1246/bcsj.65.2200
  31. Solid State Ionics v.62 Electrical Properties and Crystal Structure of Solid Electrolyte Based on Lithium Hafnium Phosphate $LiHf_2(PO_4)_3 H. Aono;E. Sugimoto;Y. Sadaoka;N. Umanaka;G-Ya Adachi https://doi.org/10.1016/0167-2738(93)90387-I
  32. Solid State Ionics v.112 NASICON to Scandium Wolframete Transition in $Li_{1+x}M_{x}Hf_{2-x}(PO_4)_3$ (M=Cr, Fe): Structure and Ionic Conductivity E. R. Losilla;S. Bruque;M. A. G. Aranda;L. M. Real.E. Morin;M. Quaron https://doi.org/10.1016/S0167-2738(98)00207-0
  33. J. Mater. Chem. v.9 New Lithium Ion Conductors Based on the NASICON Structure V. Thangadurai;A. K. Shukla;J. Gopalakrishnan https://doi.org/10.1039/a807007e
  34. Solid State Ionics v.95 Ionic Conductivity of $Li^+$ Ion Conductors $LiM^{3+}M^{4+}P_3O_12$ M. Sugantha;U. V. Varadaraju https://doi.org/10.1016/S0167-2738(96)00565-6
  35. Solid State Commumication v.86 High Ionic Conductivity in Lithium Lanthanum Titanate Y. Inaguma.C. Liquan;M. Itoh;T. Makamura https://doi.org/10.1016/0038-1098(93)90841-A
  36. Solid State Ionics v.70/71 Candidate Compounds with Perovsikite Structure for High Lithium Ionic Conductivity Y. Inaguma;C. Liquan;M. Itoh;T. Makamura https://doi.org/10.1016/0167-2738(94)90309-3
  37. Solid State Ionics v.121 Oeder-disorder of the A-site Ions and Lithium Ionics Conductivity in Perovskite Solid Solution $La_0{0.67-x}Li_{3x}TiO_3$ (x=0.11) Y. Harada;Y. Hirakoso;H. Kawai;J. Kuwsano https://doi.org/10.1016/S0167-2738(99)00043-0
  38. Solid State Ionics v.108 Lithium Ion Conductivity of Polycrystalline Perovskite $La_{0.67-x}Li_{3x}TiO_3$ with Ordered and Disordered Arrangement of the A-site Ions Y. Harada;Y. Hirakoso;H. Kawai;J. Kuwano https://doi.org/10.1016/S0167-2738(98)00070-8
  39. Solid State Ioncis v.109 A Distrubution of Activation Energies for the Local and Long-range Ionic Motion is Consisted with the Disordered Structure of the Peroskite $Li_{3x}La_{{\frac{2}{3}}-x}TiO_3$ O. Bohnke;J. Emery;A. Veron;J. L. Fourquet;J. Y. Buzare;P. Florian;D. Massiot https://doi.org/10.1016/S0167-2738(98)00081-2
  40. J. Solid State Chem. v.127 Stueeture and Microstructural Studies of the Series $Li_{3x}La_{{\frac{2}{3}}-x}TiO_3$ J. F. Fourquet;H. Duroy;M. P. Crosnier https://doi.org/10.1006/jssc.1996.0385
  41. Solid State Ionics v.71/71 High Lithium Ion Conductivity in the Perovskite-type Compounds $Ln_{\frac{1}{2}}Li_{\frac{1}{2}}TiO_3$ (Ln-La, Pr, Bd, Sm) M. Itoh;Y. Inaguma;W. H. Jung;L. Chen;T. Nakamura
  42. J. Phys. Chem. Solids v.58 Effects of Substitution and Pressure on Lithium Ion Conductuvity in Perovskites $Ln_{\frac{1}{2}}Li_{\frac{1}{2}}TiO_3$ (Ln=La, Pr, Nd, Sm) Y. Inaguma;Y. Matsui;J. Yu;Y-J. Shan;T. Nakamura;M. Itoh https://doi.org/10.1016/S0022-3697(96)00226-0
  43. Solid State Ionics v.98 Evaluation of the ac Response of Li-electrolytic Perovskites $Li_{0.5}(Ln_{x}La_{0.5-x})TiO_3$ (Ln=Nd, Gd) in Conjuction with their Crystallographic and Microstructure Characteristics J-S. Lee;K. S. Yoo;T. S. Kim;H. J. Jung https://doi.org/10.1016/S0167-2738(97)00015-5
  44. Solid State Ionics v.107 Dependence of the Lithium Ionic Conductivity on the B-site Ion Substitution in $Li_{0.5}La_{0.5}Ti_{1-x}M_{x}O_3$ (M=Sn, Zr, Mn, Ge) H-T. Chung;J-G. Kim;H-G. Kim https://doi.org/10.1016/S0167-2738(97)00525-0
  45. Solid State Ionics v.86-88 Influence of site Percolation and Local Distortion on Lithium Ion Conductivity in Perovskite Oxides $La_{0.55}Li_{0.35-x}K_{x}TiO_3$ and $La_{0.55}Li_{0.35}TiO_3-KMO_3$ (M=Nb and Ta) T. Katsumata;Y. Matsui;Y. Inaguma;M. Ioth https://doi.org/10.1016/0167-2738(96)00116-6
  46. Solid State Ionics v.86-88 Influences of Carrier Concentration and Site Percolation on Lithium Ion Conductivity in Perovskite-type Oxide Y. Inaguma;M. Itoh https://doi.org/10.1016/0167-2738(96)00100-2
  47. J. of Power Sources v.68 Formation of Perovkite Solid Solutions and Lithium-ion Conductivity in the Compositions Li_{2x}Sr_{1-2x}M_{0.5-x}Ta_{0.5+x}O_3$ (M=Cr, Fe, Co, Al, Ga, InY) H. Watanabe;J. Kuwano https://doi.org/10.1016/S0378-7753(97)02645-1
  48. Solid State Ionics v.91 Mechanism of Ionic Conduction and Electrochemical Intercalation of Lithium into the Perovskite Lanthanum Lithium Titanate O. Bohnke;C. Bohnke;J. L. Fourquet https://doi.org/10.1016/S0167-2738(96)00434-1
  49. Solid State Ionics v.127 Conductivity Relaxation in Lithium Ion Conductors with the Perovskite-type Structure K. Mizumoto;S. Hayashi https://doi.org/10.1016/S0167-2738(99)00292-1
  50. J. Electrochem. Soc. v.144 Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast-ion-conductivity $Li_{0.29}La_{0.57}TiO_3$ Perovskite-type Compound P. Birke;S. Scharner;R. A. Huggins;W. Weppner https://doi.org/10.1149/1.1837713
  51. Solid State Ionics v.116 Lithium Ion Conductor in A-Site Deficient Perovskites $A_{\frac{1}{4}}Li_{\frac{1}{4}}TaO_3$ (R=La, Nd, Sm, and Y) K. Mizumoto;S. Hayashi https://doi.org/10.1016/S0167-2738(98)00414-7
  52. J. Ceram. Soc. Jpn. v.106 Lithium Ion Mobility and Actication Energy for Lithium Ion Conduction in A-site Deficient Perovskites $La_{{{\frac{1}{3}}-x}Li_{3x}TaO_3$ K. Mizumoto;S. Hayashi https://doi.org/10.2109/jcersj.106.369
  53. Solid State Ionics v.79 Lithium Ion Conductivity in the Perovskite-type $LiTaO_3-SrTiO_3$ Solid Solution Y. Inaguma;Y. Matsui;Y-Y. Shan;M. Ioth;T. Nakamura https://doi.org/10.1016/0167-2738(95)00036-6
  54. Solid State Ionics v.90 Synthesis and Electrophysical Properties of Novel Lithium Ion Conductivity Oxides A. G. Belous https://doi.org/10.1016/S0167-2738(96)00406-7
  55. Solid State Ionics v.113-115 New Perovsike-type Lithium Ion Conductors, $La_xM_yLi_{1-3x-y}NbO_3$ (M-Ag and Na) T. Katsumata;Y. Inaguma;M. Itoh https://doi.org/10.1016/S0167-2738(98)00311-7
  56. Solid State Ionics v.108 Preparation and Characterization of New Pervskote Oxides $La_xNa_{1-3x-y}Li_yNbO_3\;(0.0{\le}x\;and\;y{\le0.2)$ Y. J. Shan;N. Sinozaki;T. Nakamura https://doi.org/10.1016/S0167-2738(98)00069-1
  57. Solid State Ionics v.110 Ionic Conduction of Lithium for Perovskite Type Compounds, $(Li_{0.05}La_{0.317})_{1-x}Sr_{0.5x}]NbO_3$, $(Li_{0.1}La_{0.3})_{1-x}Sr_{0.5x}NbO_3$ and $(Li_{0.25}La_{0.25})_{1-x}M_{0.5x}NbO_3$ (M=Ca and Sr) Y. Kawakami;M. Fukuda;H. Ikuta;M. Wakihara https://doi.org/10.1016/S0167-2738(98)00131-3
  58. Solid State Ionics v.112 Electrical Properties of $La_{1.33-x}Li_{3x}Ti_2O_6\;(0.1 A. I. Ruiz;M. L. Lopez;M. L. Veiga;C. Pico https://doi.org/10.1016/S0167-2738(98)00220-3
  59. J. Am. Ceram. Soc. v.71 Electrical Properties of Superionic Conducting Glasses in the Pseudibunary System $CuI-Cu_2MoO_4$ N. Machida;T. Minami https://doi.org/10.1111/j.1151-2916.1988.tb06414.x
  60. Fast Ion Transport v.1 D. Kunze
  61. Solid State Ionics v.136-137 Preparation and Characterization of Lithium Ion-conducting Oxysulfide Glasses T. Minami;A. Hayashi;M. Tatsumisago https://doi.org/10.1016/S0167-2738(00)00555-5
  62. Solid State Ionics v.105 Ionic Glasses History and Challenges A. Bunde;K. Funke;M. D. Ingram https://doi.org/10.1016/S0167-2738(97)00444-X
  63. J. of Non-crys. Solids v.262 Determination of the Crystallzation Enthalpies of Lithium Ion Conducting Alumino-silicate Glasses J. Rogez;P. Knauth;a. Garnier;H. Ghobarkar;O. Schaf https://doi.org/10.1016/S0022-3093(99)00688-2
  64. Solid State Ionics v.9 no.10 The Effects of Mixed Anions in Ionic Conductive Glass B. Carette;M. Ribes;J. L. Souquet https://doi.org/10.1016/0167-2738(83)90323-5
  65. Solid State Ionics v.122 Lithium Ion Transport in $Li_2SO_4-Li_2O-P_2O_5$ Glasses M. Ganguli;M. H. Bhat;K. J. Rao https://doi.org/10.1016/S0167-2738(99)00059-4
  66. Solid State Ionics v.18/19 Electrical Properties of Lithium Conductive Silicon Sulfide Glasses Prepared by Twin Roller Quenching A. Pradel;M. Ribes https://doi.org/10.1016/0167-2738(86)90139-6
  67. Solid State Ionics v.28-30 Improved Stability for the $SiS_2-P_2S_5-Li_2S-LiI$ Glass System J. H. Kennedy;Z. Zhang https://doi.org/10.1016/S0167-2738(88)80133-4
  68. Solid State Ionics v.18/19 Solid State Batteries Using Vitreous Solid Electrolytes J. Akiridge;H. Vourlis https://doi.org/10.1016/0167-2738(86)90313-9
  69. Solid State Ionics v.28/30 Performance of Li/TiS₂Solid State Batteries Using Phosphorous Chalcogenide Network Former Glasses as Solid Electrolyte J. Akiridge;H. Vourlis https://doi.org/10.1016/S0167-2738(88)80156-5
  70. Solid State Ionics v.17 Effect of Rapid Quenching on Electrical Properties of Lithium Conductive Glasses A. Pradel;T. Pagnier;M. Ribles https://doi.org/10.1016/0167-2738(85)90064-5
  71. Solid State Ionics v.9/10 Ionic Conductive Sulfide-based $M_2S-GeS_2-MI\;(M=Li, Ag)$ Glass System: their Use in Solid State Batteries B. Carette;M. Maurin;M. Bibes;M. Muclot https://doi.org/10.1016/0167-2738(83)90310-7
  72. Mater. Res. Bull. v.18 Preparation and Ionic Conductivity of New $B_2S_3-Li_2S-LiI$ Glasses H. Wada;M. Menetrier;A. Levasseur;P. Hagenmuller https://doi.org/10.1016/0025-5408(83)90080-6
  73. Mater. Res. Bull. v.19 Fast $Li^+$ Ion Transport in Indine-thioborate Glasses W. Burdkhardt;M. Makyta;A. Levasseur;P. Hagenmuller https://doi.org/10.1016/0025-5408(84)90224-1
  74. Solid State Ionics v.5 Superionic Conduction in $Li_2S-P_2S_5-LiI-glasses$ R. Mercier;J. P. Malugani;B. Fahys;G. Robert https://doi.org/10.1016/0167-2738(81)90341-6
  75. Solid State Ionics v.9/10 De Nouveaus Verres Conducteurs Par LIon Lithium Et Leurs Applications Dans Des Generateurs Electrochimiques J. P. Malungani;B. Fahys;R. Mercier https://doi.org/10.1016/0167-2738(83)90311-9
  76. J. Electrochem. Soc. v.133 A Highly Conductive $Li_+$ Glass System: $(1-x)(0.4SiS_2-0.6Li_2S)-xLiI$ J. Kennedy;Y. Yang https://doi.org/10.1149/1.2108425
  77. Solid State Ionics v.53-56 New Lithium Ion Conductors Based on $Li_2S-SiS_2$ System S. Kondo;K. Takada;Y. Yamamura https://doi.org/10.1016/0167-2738(92)90310-L
  78. Solid State Ionics v.78 Thermal and Electrical Properties of Rapidly Quenched Glasses in the Systems $Li_2S-SiS_2-Li_xMO_y\;(Li_xMO_y=Li_4SiO_4,\;Li_2SO_4)$ K. Hirai;M. Tatsumisago;T. Minami https://doi.org/10.1016/0167-2738(95)00094-M
  79. J. Electrochem. Soc. v.146 Electrochemical Properties for the Lithium Ion Conductive $(100-x) (0.6Li_2S-0.4SiS_2)-xLi_4SiO_4$ Oxysulfide Glasses A. Hayashi;M. Tatsumisago;T. Minami https://doi.org/10.1149/1.1392498
  80. Solid State Ionics v.86-87 Solid State Lithium Battery with Oxysulfide Glass K. Takada;N. Aotni;K. Iwanoto;S. Kondo
  81. J. Non-Crys. Solids v.256&257 Electrical Properties of New Glasses Based on the $Li_2S-SiS_2$ System R. F. Bartholomew;D. M. Young;A. J. G. Ellison
  82. Solid State Ionics v.96 Superionic Conductivity of Glass-ceramics in the System $Li_2O-Al_2O_3-TiO_2-P_2O_5$ J. Fu https://doi.org/10.1016/S0167-2738(97)00018-0
  83. 1th Korea-Japan Student Symposium:Electrochemical Properties and Applications of Materials Solid Electrolyte CO₂Sensor with Li-ion Conductors J. Mizusaki;T. Kawada;K. Yashiro;K. Kawamura;S. Nagano;S. Terui;K. Asano
  84. Chem. Lett. Preparation and Ionic Conductivity of the Rapidly Quenched Glassed in the System $Li_2O-TiO_2-P_2O_5$ N. Machida;K. Fuji;T. Minami
  85. Solid State Ionics v.134 Lithium Ion Conductivity and Thermal Behavior of Glasses and Crystallzed Glasses in the System $Li_2O-Al_2O_3-TiO_2-P_2O_5$ I. Abrahams;E. Hadzifejzovic https://doi.org/10.1016/S0167-2738(00)00768-2
  86. Solid State Ionics v.1 T. Kudo;K. Fueki
  87. Mat. Res. Bull. v.11 Ionic Conductivity of Lithium Phosphate-doped Lithium Orthosilicate Y. W. Hu;J. D. Raistrick;R. A. Huggins https://doi.org/10.1016/0025-5408(76)90025-8
  88. J. Mat. Sci. v.5 Crystallization of Lithium Zinc Silicates A. R. West;F. P. Glasser https://doi.org/10.1007/BF00554364
  89. J. Mat. Sci. v.6 Crystallization of Lithium Magnesium Zinc Silicates, Part1 Phase Equilibria in the System $Li_4SiO_4-Mg_2SiO_4-Zn_2SiO_4$ A. R. West;F. P. Glasser https://doi.org/10.1007/BF00980609
  90. Solid State Ionics v.31 Ionic Conductivity of $Li_{4-2x}Mg_xSiO_4$ M. Wakaihara;T. Uchida;T. Gohara https://doi.org/10.1016/0167-2738(88)90282-2
  91. Solid State Ionics v.40-41 Ionic Conductivity of $Li^+$ Ion Conductors, Li_{4.2}M_xSi_{1-x}O_4\;(M=B^{3+},\;Al^{3+},\;Ga^{3+},\;Cr^{3+},\;Fe^{3+},\;Co^{2+},\;Ni^{2+})$ Y. Saito;T. Asai;H. Kageyama;O. Nakamura https://doi.org/10.1016/0167-2738(90)90281-U
  92. Solid State Ionics v.47 Conductivity Enhancement Mechanism of Interstitial-type Li^+$ Conductor, Li_{4+x}B_xSi_{1-x}]O_4\;(0{\le}x{\le}0.7)$ Y. Sato;K. Ado;T. Asai;H. Hageyama;O. Nakamura https://doi.org/10.1016/0167-2738(91)90193-F
  93. Solid State Ionics v.83 Electrical Properterties of the Solid Solution $Li_{4-3x}In_xSiO_4$ J. B. Chavarria;P. Quinana;A. Huanosta https://doi.org/10.1016/0167-2738(95)00230-8
  94. Solid State Ionics v.79 Influence of the Preparation Process on the Cation Trasport Properties of $Li_{4+x}M_xSi_{1-x}O_4$ (M=B, Al) Solid Electrolytes C. Masquelier;M. Tabuchi;T. Yakeuchi;W. Soizumi;H. Kageyma;O. Nakamura https://doi.org/10.1016/0167-2738(95)00037-7
  95. Mat. Res. Bull. v.13 Crystal Structure and Ionic Conductivity of $Li_{14}Zn(GeO_4)_4$ and Other New $Li^+$ Superionic Conductors H. Y. P. Hong https://doi.org/10.1016/0025-5408(78)90075-2
  96. J. Solid State Chem. v.44 Ionic Conductivity of LISICON Solid Solutions, Li_{2+2x}Zn_{1-x}GeO_4$ P. G. Bruce;A. R. West https://doi.org/10.1016/0022-4596(82)90383-8
  97. J. Solid State Chem. v.53 Ion Trapping and its Effects on the Conductivity of LISICON and Other Solid Electrolytes P. G. Bruce;A. R. West https://doi.org/10.1016/0022-4596(84)90122-1
  98. J. Appl. Electrochem. v.15 Behavior of $Li_4SiO_4$ and its Solid Solution During.D.C and A.C Measurement K. Jackowaska;A. R. West https://doi.org/10.1007/BF00616002
  99. Mat. Res. Bull. v.15 New $Li^+$ Ion Conductors in the System $Li_4GeO_4-LiVO_4$ J. Kuwano;A. R. West https://doi.org/10.1016/0025-5408(80)90249-4
  100. Solid State Ionics v.76 New Solid Electrolytes and Mixed Conductors $Li_{3+x}Cr_{1-x}M_xO_4$: M=Ge, Ti M. A. K. L. Dissanayake;R. P. Gunawardane;H. H. Sumathipala;A. R. West https://doi.org/10.1016/0167-2738(94)00218-H
  101. Solid State Ionics v.86-88 Rechargeable Lithium Thin Films Cell with Inorganic Electrolytes J. Yamaki;H. Ohtsuka;T. Shodai https://doi.org/10.1016/0167-2738(96)00301-3
  102. Mat. Res. Bull. v.14 High Ionic Conductivity in Densified Polycrystalline Lithium Nitride J. R. Rea;D. L. Foster https://doi.org/10.1016/0025-5408(79)90146-6
  103. Solid State Ionics v.15 Lithium Aluminum Nitride, $Li_3AIN_2$ as a Lithium Solid Electrolyte H. Yamane;S. Kikkawa;M. Koizumi https://doi.org/10.1016/0167-2738(85)90106-7
  104. Solid State Ionics v.18-19 New Fast Solid Lithium Ion Conductors at Low and Intermediate Temperature B. Schoch;E. Hartmann;W. Weppor https://doi.org/10.1016/0167-2738(86)90172-4
  105. Mat. Res. Bull. v.16 New Fast Lithium Ionic Conductor in the $Li_3N-LiI-LiOH$ System H. Ohayashi;R. Magai;A. Gotoh;S. Mochizuki;T. Kudo https://doi.org/10.1016/0025-5408(81)90125-2
  106. Solid State Ionics v.38 Lithium Ion Conductivity of $LiPN_2\;and\;Li_7PN_4$ W. Schnick;J. Luedke https://doi.org/10.1016/0167-2738(90)90432-Q
  107. Mat. Res. Bull. v.14 Fast Ionic Lithium Conduction in Solid Lithium Nitride Chloride P. Hartwing;W. Weppner;W. Wichelhaus https://doi.org/10.1016/0025-5408(79)90191-0
  108. Solid State Ionics v.96 Study of the Lithium Solid Electrolytes Based on Lithium Nitride Chloride $(Li_9N_2Cl_3)$ Y. Z. Jia;J. X. Yang https://doi.org/10.1016/S0167-2738(96)00567-X
  109. J. of Power Sources v.68 New Lithium-ion Conducting Compounds $3Li_3N-MI$ (M=Li, Na, K, Rb) and their Application to Solid State Lithium-ion Cells S. Hatake;J. Kuwano;M. Miyamori;Y. Saito;S. Koyama https://doi.org/10.1016/S0378-7753(97)02644-X
  110. Solid State Ionics v.34 Preparation, Structure and Ionic Conductivity of Lithium Phosphide G. A. Nazri https://doi.org/10.1016/0167-2738(89)90438-4
  111. Solid State Ionics v.86-88 Preparation and Physical Properties of Lithium Phosphide-lithium Chloride, a Solid Electrolyte for Solid State Lithium Batteries G. A. Nazri;R. A. Conell;C. Julien https://doi.org/10.1016/0167-2738(96)00099-9
  112. Mat. Res. Bull. v.16 Ionic Conductivity of Solid Lithium Ion Conductors with the Spinel Structure:$Li_2MCI_4$ (M=Mg, Mn, Fe, Cd) R. Kanno;Y. Takeda;O. Yamamoto https://doi.org/10.1016/0025-5408(81)90142-2
  113. Solid State Ionics v.9-10 Phase Diagram and Ionic Conductivity of the Lithium Chloride-Oron(Ii) Chloride System R. Kanno;Y. Takeda;O. Yamamoto https://doi.org/10.1016/0167-2738(83)90225-4
  114. Solid State Chem. v.71 New Double Chloride in the $LiCl-CoCl_2$ System: II Preparation, Crystal Structure, Phase Transformation, Ionic Conductivity of $Li_2CoCl_4$ Spinel R. Kanno;Y. Takeda;A. Takahashi;O. Yamamoto;R. Suyama;S. Kume https://doi.org/10.1016/0022-4596(87)90159-9
  115. Solid State Ionics v.28-30 Ionic Motion of Terahedrally and Octahedrally Coordinated Lithium Ions in Ternary and Quaternary Halides H. D. Lutz;P. Kuske;K. Wussow https://doi.org/10.1016/0167-2738(88)90371-2
  116. Solid State Ionics v.48 Ionic Conductivity of Spinel-type Qunternary Lithium Chlorides-phase Diagram of $LiI-M^ICl-M^{II}Cl_2\;(M^I=Cu, Na,\;M^{II}=Mn, Cd, Mg)$ H. D. Lutz;A. Pfitzner;C. Wikel https://doi.org/10.1016/0167-2738(91)90209-T
  117. Solid State Ionics v.28-30 Structures, Ionic Conductivity and Phase Transformation of Double Chloride Spinels R. Kanno;Y. Takeda;O. Yamamoto https://doi.org/10.1016/0167-2738(88)90370-0
  118. Solid State Ionics v.62 Fast Ionic Conductivity of Ternary Iodides in the Systems LiI-M^{II}I_2\;(M^II=Mn, Cd, Pb)$ H. D. Lutz;Z. Zhang;A. Pfitzner https://doi.org/10.1016/0167-2738(93)90245-X
  119. Z. Naturforsch v.20a Electrical Conductivity of Solid and Molten Lithium Sulfate A. Kvist;A. Lunden
  120. Solid State Ionics v.66 Conductivity Mechanism in $Li_2SO_4-Ag_2SO_4$ Binary System K. Singh https://doi.org/10.1016/0167-2738(93)90021-T
  121. Solid State Ionics v.90 Ion Diffusion in the High-temperature Phases $Li_2SO_4,\;LiNaSO_4,\;LiAgSO_4\;and\;Li_4Zn(SO_4)_3$ R. Tarneberg;A. Lunden https://doi.org/10.1016/S0167-2738(96)00399-2
  122. Solid State Ionics v.28-30 Phase Diagrams of Binary $Li_2SO_4-MeSO_4$ (Me=Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn) A. Lunden;K. Schroeder;H. Ljungmark https://doi.org/10.1016/S0167-2738(88)80047-X
  123. Solid State Ionics v.9-10 Phase Diagram, Electrical Conductivity, and Cation Diffusion of the System Lithium Suphase-Zinc Sulphase A. Lunden;A. Bengrzelius;R. Kaber;L. Nilsson;K. Schroeder;R. Tarneberg https://doi.org/10.1016/0167-2738(83)90214-X
  124. Solid State Ionics v.39 Influence of Aliovalent Cation on the Conductivity of Monolinic $Li_2SO_4$ and the Sulpahte-carbonate Eutectic K. Singh;S. S. Bhoga https://doi.org/10.1016/0167-2738(90)90399-C
  125. Solid State Ionics v.21 Phase Diagram and Electrical Conductivity of the $Li_2SO_4-Li_2CO_3$ System M. A. K. L. Dissanayake;B. E. Mellander https://doi.org/10.1016/0167-2738(86)90190-6
  126. Solid State Ionics v.38 Electrical Conductivity and Phase Diagram of the System Li[sub 2]SO[sub 4]-Li[sub 3]PO[sub 4] M. Touboul;N. Sepor;M. Quarton https://doi.org/10.1016/0167-2738(90)90425-Q
  127. Solid State Ionics v.45 Phase Transition and Ionic Conductivity of the Lithium Sulphate-lithium Phosphate System C. N. Wijayasekera;B. E. Mellander https://doi.org/10.1016/0167-2738(91)90165-8
  128. Solid State Ionics v.82 Phase Diagram and Ionic Conductivity of $Li_2SO_4-Li_3VO_4$ System M. Toubboul;A. Elfakir;M. Quarton https://doi.org/10.1016/0167-2738(95)00193-A
  129. J. Electrochem. Soc. v.120 Conduction Characteristics of the Lithium Iodide-aluminum Oxide Solid Electrolytes C. C. Liang https://doi.org/10.1149/1.2403248
  130. Solid State Ionics v.36 Influence of Zirconia Doping on the Physical Properties of LISICON T. Y. Aygub;W. Boguaz https://doi.org/10.1016/0167-2738(89)90183-5
  131. Solid State Ionics v.36 Composite Solid Electrolytes in the $Li_2SO_4-Al_2O_3$ System N. F. Uvarov;O. P. Shrivastava;E. F. Hairedinov https://doi.org/10.1016/0167-2738(89)90056-8
  132. Solid State Ionics v.51 Effect of Morphology and Particle Size on the Ionic Conductivities of the Composite Solid Electrolytes N. F. Uvarov;V. P. Isupov;V. Sharma;A. K. Shukla https://doi.org/10.1016/0167-2738(92)90342-M
  133. Solid State Ionics v.70-71 Fabrication of $Li_3PO_4-Al_2O_3$ Composites by an Electrochemical Technique M. Nagai;T. Nishino https://doi.org/10.1016/0167-2738(94)90292-5
  134. J. Phys. Chem. Solids v.46 Space Charge Regions in Solid Two-phase System and their Conduction Contribution. I. Conductance Enhancement in the System Ionic Conductor Interphase and Application on AgCl:$Al_2O_3$ and AgCl:$SiO_2$ J. Maier https://doi.org/10.1016/0022-3697(85)90172-6
  135. Phys. Rev. Lett. v.55 Dispersive Ionic Conductors and Percolation Theory A. Bunde;W. Dieterich;H. E. Roman https://doi.org/10.1103/PhysRevLett.55.5
  136. Phys. Rev. v.B43 Conductivity of Dispersed Ionic Conductors A Percolation Model with Critical Points H. E. Roman;A. Bunde;W. Dieterich
  137. Phys. Rev. v.B36 Particle Size Effect on the Conducting of Dispersed Ionic Conductors H. E. Roman;M. Yusouff
  138. J. Electrochem. Soc. v.123 A High Energy Density Solid State Battery System C. C. Liang;L. H. Barnette https://doi.org/10.1149/1.2132855
  139. Solid State Ionics v.118 A First Approach to a Monolithic all Solid State Inorganic Lithium Battery P. Birke;F. Salam;S. Doring;W. Weppner https://doi.org/10.1016/S0167-2738(98)00462-7