DOI QR코드

DOI QR Code

Densification Behavior of Metal Powder Under Cold Compaction

냉간 압축 하에서 금속 분말의 치밀화 거동

  • Published : 2002.01.01

Abstract

Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densifcation behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

Keywords

References

  1. Lewis, R. W., Jinka, A. G. K and Gethin, D. T., 1993, 'Computer-Aided Simulation of Metal Powder Die Compaction Processes,' Powder Metall. Int., Vol. 25, No. 6, pp. 287-293
  2. Gethin, D. T., Tran, V. D., Lewis, R. W. and Ariffin, A. K., 1994, 'An Investigation of Powder Compaction Processes,' Int. J.Powder Metall., Vol. 30, No 4, pp. 385-398
  3. Kuhn, H. A. and Downey, C. L., 1971, 'Deformation Characteristics and Plasticity Theory of Sintered Powder Materials,' Int. J. Powder. Metall., Vol. 7, No. 1, pp. 15-25
  4. Shima, S. and Oyane, M., 1976, 'Plasticity Theory for Porous Metals,' Int. J. Mech. Sci., Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  5. Doraivelu, S. M., Gelgel, H. L., Gunasekera, J. S., Malas, J. C. and Morgan, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' Int. J. Mech. Sci., Vol. 26, pp. 527-534 https://doi.org/10.1016/0020-7403(84)90006-7
  6. Brown, S. B. and Weber, G. A., 1988, 'A Constitutive Model for the Compaction of Metal Powders,' Mod. Dev. Powder. Metall., Vol. 18, No. 21, pp. 465-476
  7. Arzt, E., 1982, 'The Influence of an Increasing Particle Coordination on the Densification of Spherical Powders,' Acta Metall., Vol. 30, pp. 1883-1890 https://doi.org/10.1016/0001-6160(82)90028-1
  8. Fleck, N. A., Kuhn, L. T. and McMeeking, R. M., 1992, 'Yielding of Metal Powder Bonded by Isolated Contacts,' J. Mech. Phys. Solids, Vol. 40, No. 5, pp. 1139-1162 https://doi.org/10.1016/0022-5096(92)90064-9
  9. Kim, K. T. and Kim, J. S., 1998, 'Stage 1 Compaction Behavior of Tool Steel Powder Under Die Pressing,' Powder Metallurgy, Vol. 31, pp. 199-203
  10. Kwon, Y. S., Lee, H. T. and Kim, K. T., 1997, 'Analysis for Cold Die Compaction of Stainless-Steel Powder,' J. Eng. Mat. Tech., Vol. 119, pp. 366-373 https://doi.org/10.1115/1.2812271
  11. Crawford, J. and Lindskog, P., 1983, 'Constitutive Equation and Their Role in the Modeling of the Cold Pressing Process,' Scand. J. Metall, Vol. 12, pp. 271-281
  12. Watson, T. J. and Wert, J. A., 1993, 'On the Development and Application of Constitutive Relations for Metallic Powders,' Metallurgical Trans., Vol. 24A, pp. 2071-2081 https://doi.org/10.1007/BF02666341
  13. Chtourou, H., Guillot, M., Gakwaya, A. and Guillot, M., 1999, 'Modeling of the Metal Powder Compaction Process Using the Cap Model. Part Ⅰ: Experimental Material Characterization and Validation,' Int. j. solids struct., Submitted for Publication
  14. Sun, X. K., Chen, S. J.., Xu, J. Z., Zhen, L. D. and Kim, K. T., 1999, 'Analysis of Cold Compaction Densification Behaviour of Metal Powders,' Mater. sci. eng., Vol. 267, pp. 43-49 https://doi.org/10.1016/S0921-5093(99)00052-0
  15. Trasorras, J., Krauss, T. M. and Fergusson, B. L., 1989, 'Modeling The Powder Compaction Using The Finite Element Method,' Proceeding of the 1989 International Conference on Powder Metallurgy, San Diego. CA, pp. 85-104
  16. ABAQUS User's I and II Manual, Hibbit, Karlsson, and Sorensen, 1998
  17. Aravas, N., 1987, 'On The Numerical Integration of A Class of Pressure-dependent Plasticity Models,' J. Num. Meth. Engrg., vol. 24, pp. 1395-1416 https://doi.org/10.1002/nme.1620240713
  18. Lush, A. M., Weber, G. and Anand, L., 1989, 'An Implicit Time-integration Procedure for a Set of Internal Variable Constitutive Equations For Isotropic Elasto-Viscoplasticity,' Int. J. Plasticity., Vol. 5, pp. 521-549 https://doi.org/10.1016/0749-6419(89)90012-0
  19. Govindarajan, R. M., 1992, Deformation Processing of Porous Metals, Doctoral thesis, University of Pennsylvania, U.S.A.
  20. Ludwik, P., 1909, Element der Technologischen Mechanik, Springer, Berlin
  21. Wang, J. C., 1984, 'Young's Modulus of Porous Materials,' J. Mater. Sci., Vol. 19, pp. 801-814 https://doi.org/10.1007/BF00540451
  22. Schofield, A. and Wroth, P., 1968, Critical State Soil Mechanics, McGraw-Hill, Lodon
  23. Kim, K. T., Choi, S. W. and Park, H., 2000, 'Densification Behavior of Ceramic Powder Under Cold Compaction, ASME J. Eng. Mat. Tech., Vol. 122, pp. 238-244 https://doi.org/10.1115/1.482793
  24. Gurson, A. L., 1977, 'Contiuum Theory of Ductile Rupture by Void Nucleation and Growth-Part 1. Yield Criteria and Flow Rules for Porous Ductile Media,' J. Eng. Mat. Tech., Vol. 99, pp. 2-15 https://doi.org/10.1115/1.3443401
  25. Govindarajan, R. M. and Aravas, N., 1994, 'Deformation Pressing of Metal Powder: Part Ⅰ-Cold Isostatic Pressing,' Int. J.Mech. Sci., Vol. 36, No. 4, pp. 343-357 https://doi.org/10.1016/0020-7403(94)90040-X