DOI QR코드

DOI QR Code

Effects of Tube Inclination Angle on Nucleate Pool Boiling Heat Transfer

튜브 경사각이 풀핵비등열전달에 미치는 영향

  • Gang, Myeong-Gi (Department of Mechanical Engineering Education, Andong National University)
  • Published : 2002.01.01

Abstract

An experimental parametric study of a tubular heat exchanger has been carried out far the saturated water at atmospheric pressure to determine effects of tube inclination on pool boiling heat transfer. For the analysis, seven inclination angles(0°, 15°, 30°, 45°, 60°, 75°, and 90°) and two tube diameters(12.7 and 19.1 mm) were tested. According to the results, inclination angles result in very much change on pool boiling heat transfer. As the inclination angle is around horizontal or vertical, maximum or minimum heat transfer is expected, respectively. For the same wall superheat(about 5.5K) the ratio between two heat fluxes fur $\theta$ =15° and 75° has the value of more than five when the tube diameter is 12.7 mm and heat flux is increasing.

Keywords

References

  1. Chun, M. H. and Kang, M. G., 1998, 'Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer,' ASME, J. of Heat Transfer, Vol. 120, pp. 468-476 https://doi.org/10.1115/1.2824272
  2. Kang, M. G., 2000, 'Effect of Tube Inclination on Pool Boiling Heat Transfer,' ASME, J. of Heat Transfer, Vol. 122, Issue 1, pp. 188-192 https://doi.org/10.1115/1.521456
  3. Corletti, M. M. and Hochreiter, L. E., 1991, 'Advanced Light Water Reactor Passive Residual Heat Removal Heat Exchanger Test,' Proc. of the 1st JSME/ASME Joint International Conference on Nuclear Engineering, Tokyo, Japan, pp. 381-387
  4. 강명기, 2000, 튜브 설치방향이 풀비등 열전달에 미치는 영향, 대한기계학회 논문집 B권, 제24권, 제1호, pp. 143-151
  5. Kang, M. G., 1998, 'Experimental Investigation of Tube Length Effect on Nucleate Pool Boiling Heat Transfer,' Annals of Nuclear Energy, Vol. 25, No. 4-5, pp. 295 - 304 https://doi.org/10.1016/S0306-4549(97)00056-X
  6. Jakob, M. and Hawkins, G. A., 1957, Elements of Heat Transfer, 3rd. ed., Wiley International Edition, pp. 206-210
  7. van Stralen, S. J. D. and Sluyter, W. M. 1969, 'Investigations on the Critical Heat Flux of Pure Liquids and Mixtures under Various Conditions,' Int. J Heat Mass Transfer, Vol. 12, pp. 1353 -1384 https://doi.org/10.1016/0017-9310(69)90022-2
  8. Nishikawa, K., Fujita, Y., Uchida, S., and Ohta, H., 1984, 'Effect of Surface Configuration on Nucleate Boiling Heat Transfer,' Int. J Heat Mass Transfer, Vol. 27, No.9, pp. 1559-1571 https://doi.org/10.1016/0017-9310(84)90268-0
  9. Jung, D. S., Venant, 1. E. S., and Sousa, A. C. M., 1987, 'Effects of Enhanced Surfaces and Surface Orientations on Nucleate and Film Boiling Heat Transfer in R-11,' Int. J Heat Mass Transfer, Vol. 30, No. 12, pp. 2627-2639 https://doi.org/10.1016/0017-9310(87)90144-X
  10. Fujita, Y., Ohta, H., Uchida, S., and Nishikawa, K., 1988, ''Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectabgular Spaces,' Int. J of Heat Mass Transfer, Vol. 31, No.2, pp. 229-239 https://doi.org/10.1016/0017-9310(88)90004-X
  11. Chyu, M. C. and Mghamis, A. M., 1991, 'Nucleate Boiling on Two Cylinders in Line Contact,' Int. J Heat Mass Transfer, Vol. 34, No.7, pp. 1783-1790 https://doi.org/10.1016/0017-9310(91)90153-6
  12. Howard, A. H. and Mudawar, I., 1999, 'Orientation Effects on Pool Boiling Critical Heat Flux(CHF) and Modeling of CHF for Near-Vertical Surfaces,' Int. J Heat Mass Transfer, Vol. 42, pp. 1665-1688 https://doi.org/10.1016/S0017-9310(98)00233-6
  13. Githinji, P. M. and Sabersky, R. H., 1963, 'Some Effects of the Orientation of the Heating Surface in Nucleate Boiling,' ASME, J of Heat Transfer, Vol. 85, p. 379 https://doi.org/10.1115/1.3686129
  14. Cornwell, K. and Houston, S. D., 1994, ''Nucleate Pool Boiling on Horizontal Tubes: a Convection-Based Correlation,' Int. J Heat Mass Transfer, Vol. 37, Suppl. 1, pp. 303-309 https://doi.org/10.1016/0017-9310(94)90031-0