DOI QR코드

DOI QR Code

Effect of Nordihydroguaiaretic Acid on the Secretion of Lipoprotein Lipase

  • Kim, Sun-Mee (Department of Biochemistry, Chonbuk National University Medical School) ;
  • Park, Tae-Won (Department of Psychiatry, Chonbuk National University Medical School) ;
  • Park, Jin-Woo (Department of Biochemistry, Chonbuk National University Medical School)
  • 발행 : 2002.09.30

초록

Nordihydroguaiaretic acid (NDGA), an inhibitor of lipoxygenase, inhibits the secretion of proteins and causes the redistribution of resident Golgi proteins into the endoplasmic reticulum (ER). In this study, the effect of NDGA on lipoprotein lipase (LPL) secretion was investigated in 3T3-L1 adipocytes, and compared with those of brefeldin A (BFA), a well-known fungal metabolite that exhibits similar ER-Golgi redistribution. Both BFA and NDGA blocked secretions of LPL. In the presence of BFA, the active and dimeric LPL was accumulated in adipocytes. After endoglycosidase H (endo H) digestion, the proportion of LPL subunits with partially endo H-sensitive oligosaccharide was significantly increased with BFA. However, in the presence of NDGA, the cellular LPL became inactive, and only the endo H-sensitive fraction of the LPL subunit was observed. An increase of the aggregated forms was observed in the fractions of the sucrose-density gradient ultracentrifugation. These properties of LPL in the NDGA-treated cells were similar to those of LPL that is retained in ER, and the effects of NDGA could not be reversed by BFA. These results indicate that the inhibitory mechanism of NDGA on the LPL secretion is functionally different from the ER-Golgi redistribution that is induced by BFA.

키워드

참고문헌

  1. Armour, C. L., Hughes, J. M., Seale, J. P. and Temple, D. M. (1981) Effect of Iipoxygenase inhibitors on release of slow-reacting substances from human lung. Eur. J. Pharmacol. 72, 93-96. https://doi.org/10.1016/0014-2999(81)90302-2
  2. Bensadoun, A. (1991) Lipoprotein lipase. Annu. Rev. Nutr. 11, 217-237.
  3. Bergo, M.. Wu. G., Ruge, T. and Olivecrona, T. (2002) Down-regulation of Adipose Tissue Lipoprotein Lipase during Fasting Requires That a Gene, Separate from the Lipase Gene, Is Switched On. J. Biol. Chem. 277, 11927-11932. https://doi.org/10.1074/jbc.M200325200
  4. Braun, J. E. and Severson, D. L. (1992) Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem. J. 287, 337-347. https://doi.org/10.1042/bj2870337
  5. Doms, R. W, Russ, G. and Yewdell, J. W. (1989) Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell BioI. 109, 61-72. https://doi.org/10.1083/jcb.109.1.61
  6. Donaldson, J. G., Finazzi, D. and Klausner, R. D. (1992) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350-352. https://doi.org/10.1038/360350a0
  7. Drecktrah. D., de Figueiredo, P., Mason, R. M. and Brown, W. J. (1998) Retrograde trafficking of both Golgi complex and TGN markers to the ER induced by nordihydroguaiaretic acid and cyclofenil diphenol. J. Cell Sci. 111, 951-965.
  8. Eckel, R. H. (1989) Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N. Engl. J. Med. 320, 1060-1068 https://doi.org/10.1056/NEJM198904203201607
  9. Fujimoto, K. and Komfeld. R. (1991) alpha-Glucosidase II-deficient cells use endo alpha-mannosidase as a bypass route for N-Iinked oligosaccharide processing. J. Biol. Chem. 266, 3571-3578
  10. Fujiwara, T., Takami, N., Misumi, Y. and Ikehara, Y. (1998) Nordihydroguaiaretic acid blocks protein transport in the secretory pathway causing redistribution of Golgi proteins into the endoplasmic reticulum. J. Biol. Chem. 273, 3068-3075. https://doi.org/10.1074/jbc.273.5.3068
  11. Griffiths, G., Ericsson, M., Krijnse-Locker, J., Nilsson, T., Goud, B., Soling, H. D., Tang, B. L., Wong, S. H. and Hong, W. (1994) Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell Biol. 127, 1557-1574. https://doi.org/10.1083/jcb.127.6.1557
  12. Hirose, S., Oda, K. and Ikehara, Y. (1988) Tyrosine O-sulfation of the fibrinogen gamma B chain in primary cultures of rat hepatocytes. J. Biol. Chem. 263, 7426-7430.
  13. Koo, B. S., Lee, D. S., Yang, J. Y., Kang, M. K, Sohn, H. S. and Park. J. W. (2000) Lipoprotein-lipase-mediated uptake of glycated LDL. J. Biochem. Mol. Biol. 33, 148-154.
  14. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631-664 https://doi.org/10.1146/annurev.bi.54.070185.003215
  15. Kornfeld, S. and Mellman, I. (1989) The biogenesis of Iysosomes. Annu. Rev. Cell BioI. 5, 483-525 https://doi.org/10.1146/annurev.cb.05.110189.002411
  16. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  17. Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., Yuan, L. C. and Klausner, R. D. (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821-836. https://doi.org/10.1016/0092-8674(90)90096-W
  18. Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L. and Klausner, R. D. (1991) Brefeldin A's effects on endosomes, Iysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601-616. https://doi.org/10.1016/0092-8674(91)90534-6
  19. Masuno, H., Schultz, C. J., Park, J. W., Blanchette-Mackie, E. J., Mateo, C. and Scow, R. O. (1991) Glycosylation, activity and secretion of lipoprotein lipase in cultured brown adipocytes of newborn mice. Effect of tunicamycin, monensin, 1-deoxymannojirimycin and swainsonine. Biochem. J. 277, 801- 809. https://doi.org/10.1042/bj2770801
  20. Misumi, Y., Miki, K., Takatsub, A., Tamura, G. and Ikehara, Y. (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261, 11398-11403.
  21. Misumi, Y., Oda, K., Fujiwara, T., Takami, N., Tashiro, K. and Ikehara. Y. (1991) Functional expression of furin demonstrating it, intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. J. Biol. Chem. 266, 16954-16959.
  22. Morris, H. R., Piper, P. J., Taylor, G. W. and Tippins, J. R. (1979) The effect of arachidonate lipoxygena,e substrates and inhibitors on SRS-A release in the guinea-pig lung. Br. J. Pharmacol. 66, 452P.
  23. Nilsson-Ehle, P. and Schotz, M. C. (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J. Lipid Res. 17. 536-541
  24. Osborne, J. C., Jr., Bengtsson-Olivecrona, G., Lee, N. S. and Olivecrona, T. (1985) Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry 24, 5606-5611. https://doi.org/10.1021/bi00341a048
  25. Park, B. H. (2001) Inactive but dimeric form of lipoprotein lipase in human plasma. J. Biochem. Mol. Biol. 34, 329-333
  26. Park, J. W., Blanchette-Mackie, E. J. and Scow, R. O. (1996a) Brefeldin A enables synthesis of active lipoprotein lipase in cld/cld and castanospermine-treated mouse brown adipocytes via translocation of Golgi components to endoplasmic reticulum. Biochem. J. 317, 125-134. https://doi.org/10.1042/bj3170125
  27. Park, J. W., Lee, S. Y., Yang, J. Y., Rho, H. W., Park, B. H., Lim, S. N., Kim, J. S. and Kim, H. R. (1997) Effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the dimerization of lipoprotein lipase. Biochim. Biophys. Acta 1344, 132-138. https://doi.org/10.1016/S0005-2760(96)00146-4
  28. Park, J. W., Oh, M. S., Yang, J. Y., Park, B. H., Rho, H. W., Lim, S. N., Jhee, E. C. and Kim, H. R. (1995) Glycosylation, dimerization, and heparin affinity of lipoprotein lipase in 3T3-L1 adipocytes. Biochim. Biophys. Acta 1254, 45-50. https://doi.org/10.1016/0005-2760(94)00161-Q
  29. Park, J. W., Yang. J. Y., Rhee, S. R., Cho, C. G., Park, B. H., Rho, H. W., Kim. J. S. and Kim, H. R. (1996b) Glycosylation of lipoprotein lipase in human subcutaneous lipomas. Horm. Metab. Res. 28, 7-10 https://doi.org/10.1055/s-2007-979120
  30. Rothman, J. E. and Wieland, F. T. (1996) Protein sorting by transport vesicles. Science 272. 227-234. https://doi.org/10.1126/science.272.5259.227
  31. Scow, R. O., Schultz. C. J., Park, J. W. and Blanchette-Mackie, E. J. (1998) Combined lipase deficiency (cld/cld) in mice affects differently post-translational processing of lipoprotein lipase, hepatic lipase and pancreatic lipase. Chem. Phys. Lipids 93, 149-155. https://doi.org/10.1016/S0009-3084(98)00039-5
  32. Tagaya. M., Henomatsu, N., Yoshimori, T., Yamamoto, A., Tashiro. Y. and Fukui, T (1993) Correlation between phospholipase A2 activity and intra-Golgi protein transport reconstituted in a cell-free system. FEBS Lett. 324, 201-204. https://doi.org/10.1016/0014-5793(93)81393-E
  33. Tagaya. M., Henomatsu. N., Yoshimori, T., Yamamoto, A., Tashiro. Y. and Mizushima, S. (1996) Inhibition of vesicle-mediated protein transport by nordihydroguaiaretic acid. J. Biochem. (Tokyo) 119. 863-869. https://doi.org/10.1093/oxfordjournals.jbchem.a021323
  34. Vannier. C. and Ailhaud, G. (1989) Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J. Biol. Chem. 264, 13206-13216
  35. Williams, K. J., Fless. G. M., Petrie. K. A, Snyder, M. L., Brocia, R. W. and Swenson, T. L. (1992) Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent Iipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J. BioI. Chem. 267. 13284-13292.
  36. Yamaguchi, T., Yamamoto, A., Furuno, A., Hatsuzawa, K., Tani, K., Himeno. M. and Tagaya, M. (1997) Possible involvement of heterotrimeric G proteins in the organization of the Golgi apparatus. J. BioI. Chem. 272, 25260-25266. https://doi.org/10.1074/jbc.272.40.25260

피인용 문헌

  1. Increased effect of fucoidan on lipoprotein lipase secretion in adipocytes vol.84, pp.15-16, 2009, https://doi.org/10.1016/j.lfs.2009.01.020
  2. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice vol.401, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2010.09.016
  3. Paradoxical Cellular Effects and Biological Role of the Multifaceted Compound Nordihydroguaiaretic Acid vol.347, pp.10, 2014, https://doi.org/10.1002/ardp.201400159